• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
燃料电池气体扩散层表面液相涌出行为
  • Title

    Liquid phase emission behavior of gas diffusion layer surface in fuel cells

  • 作者

    刘帅姚晓航张礼斌王忠裴昊

  • Author

    LIU Shuai;YAO Xiaohang;ZHANG Libin;WANG Zhong;PEI Hao

  • 单位

    江苏大学汽车与交通工程学院清华大学苏州汽车研究院

  • Organization
    School of Automotive and Traffic Engineering,Jiangsu University
    Suzhou AutomotiveResearch Institute,Tsinghua University
  • 摘要

    燃料电池流道内的两相分布特性对于提升燃料电池水管理能力至关重要,探究多液滴在流道表面流动行为利于优化结构及运行条件。使用流体体积(VolumeofFluid)法对液态水从气体扩散层(Gasdiffusionlayer)涌出到流道内的动态过程进行模拟,研究流道内气体流速、GDL表面接触角和水孔间距对水涌出过程和流动行为影响。结果表明,液滴在GDL表面经历了生长、分离、传输和碰撞凝并等过程。气体流速明显影响压降和液滴分离周期,随着气体流速增加,压降增加,液滴分离周期从14.7ms降至4.7ms,水去除能力显著增强,高气体流速造成液滴形态和流动情况不稳定。GDL表面润湿性改变了表面张力,影响液滴形态和流动,显著影响水覆盖率,随着接触角增大,GDL表面平均水覆盖率从20.03%降至9.01%;水孔间距对液滴碰撞周期影响大,小水孔间距时液滴在生长中发生凝并,大液滴飞溅造成流道内气流速度下降,压降和GDL表面水覆盖率产生大波动;大水孔间距时,流道内速度场受影响明显,前一液滴获得大速度后发生碰撞更易造成液滴飞溅,导致最大水孔间距时水覆盖率下降,从16.84%(D=0.8cm)骤降至14.69(D=1.2cm)。研究结果为流道表面接触角,GDL孔隙分布、进气条件等参数优化提供理论指导和技术借鉴,改善质子交换膜燃料电池水传输能力提高工作效率。

  • Abstract

    ment capability, and investigating the flow behavior of multiple liquid droplets on the surface of the flow channel can help to optimize thestructure and operating conditions. The dynamic process of liquid water emergence from the gas diffusion layer (GDL) into the flow channel was simulated using the volume of fluid (VOF) method, and the effects of the gas flow rate inside the flow channel, the contact angleon the surface of the GDL, and the pore spacing on the water emergence process and flow behavior were investigated. The results show thatthe droplets undergo the processes of growth, separation, transport and collisional condensation within the GDL surface. The gas flow ratesignificantly affects the pressure drop and droplet separation period, with the increase of gas flow rate, the pressure drop increases, thedroplet separation period decreases from 14.7 to 4.7 ms, and the water removal ability is significantly enhanced, and the high gas flowrate causes the unstable droplet morphology and flow condition.The wettability of the GDL surface modifies the surface tension, which inturn affects the droplet morphology and flow, and significantly influences the water coverage, and the average water coverage of the GDLsurface is significantly affected by the increasing contact angle. The average water coverage on the GDL surface decreases from 20.03% to9.01%; the water orifice spacing has a greater impact on the droplet collision cycle, small water orifice spacing when the dropletsare growing in the process of condensation and large droplet splashing caused by a decrease in airflow velocity in the flow channel, thepressure drop and the water coverage on the GDL surface generates large fluctuations; large water orifice spacing, the velocity field in theflow channel is significantly affected by the previous droplet to obtain a larger velocity after collision is more likely to cause droplet splashing. At large water orifice spacing, the velocity field in the flow channel is significantly affected, and the previous droplet obtains a largervelocity, which is more likely to cause droplet splashing due to collision, resulting in a decrease in water coverage at the maximum waterorifice spacing, from 16.84% (D= 0.8 cm) to 14.69% (D= 1.2 cm). The results provide theoretical guidance and technical reference forthe optimization of flow channel surface contact angle, GDL pore distribution, air inlet conditions, etc., which can improve the watertransport capacity and efficiency of PEMFC.

  • 关键词

    质子交换膜燃料电池水管理气体扩散层流体体积法液滴流动行为

  • KeyWords

    proton exchange membrane fuel cell;water management;gas diffusion layer;VOF;droplet flow behavior

  • 基金项目(Foundation)
    汽车安全与节能国家重点实验室开放基金课题资助项目(KFY2227);国家自然科学基金资助项目(51776089);南通市科技计划资助项目(JC2021166);江苏省自然科学基金资助项目(BK20200910);江苏省教育厅自然科学研究资助项目(20KJB470015);四川省新能源汽车智能控制与仿真测试技术工程研究中心开放课题资助项目(XNYQ2021-003)
  • 文章目录

    0 引言

    1 模型建立

       1.1 计算域和假设

       1.2 控制方程

       1.3 边界和初始条件

       1.4 离散方法

       1.5 数值计算方案

       1.6 模型验证

    2 结果与讨论

       2.1 气体流速

       2.2 GDL表面润湿性

       2.3 水孔间距

    3 结论


  • DOI
  • 引用格式
    刘帅,姚晓航,张礼斌,等.燃料电池气体扩散层表面液相涌出行为[J].洁净煤技术,2024,30(7):145-153.
  • Citation
    LIU Shuai,YAO Xiaohang,ZHANG Libin,et al.Liquid phase emission behavior of gas diffusion layer surface in fuel cells[J].Clean Coal Technology,2024,30(7):145-153.
  • 图表
    •  
    •  
    • 模拟结果与参考文献的压降对比

    图(14) / 表(0)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map