• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
循环热冲击花岗岩微观裂隙表征与渗透特性演化规律
  • Title

    Microscopic fracture characterization and permeability evolutionary patterns of granites under cyclic thermal shock

  • 作者

    何将福任成程何坤余启航李欣儒邓旭

  • Author

    HE Jiangfu;REN Chengcheng;HE Kun;YU Qihang;LI Xinru;DENG Xu

  • 单位

    重庆大学 煤矿灾害动力学与控制国家重点实验室重庆大学 资源与安全学院

  • Organization
    State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University
    School of Resources and Safety Engineering, Chongqing University
  • 摘要
    目的

    为揭示增强型地热系统(EGS)热储开发过程中,钻井液、循环取热介质等低温流体与高温花岗岩储层循环热冲击致裂微观损伤特性与渗透率演化规律。

    方法

    开展了不同冷却方式、循环热冲击次数、冷却温度等条件下高温花岗岩致裂特征实验研究,得到了循环注水冷却和自然冷却状态下25~700 ℃花岗岩的纵波波速、孔隙体积分数、分形维数等微观结构特征参数,并基于CT扫描三维重构技术与Avizo-COMSOL交互式联合建模技术,构建了花岗岩微观孔隙渗透率演化特征模型,揭示了孔隙流体流动过程中渗流场、压力场和速度场的流线分布规律,并计算了XYZ方向的绝对渗透率。

    结果和结论

    结果表明:(1)热处理温度与循环热冲击次数均与纵波波速呈负相关,循环次数越大,波速下降越明显,岩石损伤越严重,水冷却组波速下降速率整体大于空气自然冷却组。(2)当花岗岩温度t≤300 ℃时,CT扫描切片中的微裂纹数量较少,连通性较差;当温度t≥400 ℃时,花岗岩内部微裂纹及孤立孔隙迅速发育,并逐渐形成裂隙连通网络,且水冷却对花岗岩内部损伤致裂效果更显著。(3)由于微观孔隙结构的非均质性导致XYZ三个方向渗流计算结果存在差异,沿流动方向孔隙压力减小、流量变大,在裂缝通道较窄的地方流量突然增加,但在一些复杂的孔隙结构中,不可避免地导致流体停滞或回流。研究结果揭示了循环热冲击对高温花岗岩损伤机制与渗透率演化规律,为热刺激法干热岩储层改造提供了可靠参数。

  • Abstract
    Objective

    This study aims to reveal the microscopic damage characteristics and permeability evolutionary patterns of high-temperature granite reservoirs fractured under cyclic thermal shock produced by low-temperature fluids like drilling fluids and circulating heat recovery media in the exploitation process of the enhanced geothermal systems (EGSs).

    Methods

    Using experiments on the fracturing characteristics of high-temperature granites under the conditions of varying cooling methods, numbers of thermal shock cycles, and cooling temperatures, this study determined microstructural characteristic parameters such as compressional wave (P-wave) velocity, pore volumetric fraction, and fractal dimension of granites across a temperature range of 25 to 700 ℃ under cooling via cyclic water injection and natural cooling. Using the CT scan-based 3D reconstruction technology and the interactive joint modeling technology based on Avizo-COMSOL, this study built a model describing the evolutionary characteristics of microscopic pore permeability. Employing this model, this study revealed the streamline distribution patterns of the seepage, pressure, and velocity fields during pore fluid flow and calculated the absolute permeability in the X, Y, and Z directions.

    Results and Conclusions

    Key findings are as follows: (1) The heat treatment temperature and the number of thermal shock cycles were negatively correlated with the P-wave velocity. Specifically, more thermal shock cycles corresponded to a more significant decrease in the P-wave velocity and more severe rock damage. Furthermore, the water cooling led to a more significant overall reduction in the P-wave velocity than air cooling. (2) In the case of granite temperature t≤300 ℃, CT scan slices revealed a small number of microcracks in granites, indicating poor connectivity. In contrast, at t≥400 ℃, microcracks and isolated pores occurred rapidly within granites, gradually forming an interconnected fracture network. Moreover, water cooling caused more significant internal damage-induced fracturing of granites. (3) The heterogeneity of microscopic pore structures resulted in differences in the calculation results of seepage in the X, Y, and Z directions. Consequently, the pore pressure decreased and the flow rate increased along the flow direction, with the flow rate surging sharply at locations where fracture channels narrowed. However, fluid retention or backflow was inevitable in some complex pore structures. The results of this study reveal the damage mechanisms and permeability evolutionary patterns of high-temperature granites under cyclic thermal shock, providing reliable parameters for the thermal stimulation of hot dry rock (HDR) reservoirs.

  • 关键词

    高温花岗岩循环热冲击CT扫描三维重构裂隙标准Avizo-COMSOL增强型地热系统(EGS)

  • KeyWords

    high-temperature granite;cyclic thermal shock;CT scan-based 3D reconstruction;fracture criterion;Avizo-COMSOL;enhanced geothermal system (EGS)

  • 基金项目(Foundation)
    重庆市自然科学基金面上项目(Z20201294)
  • DOI
  • 图表
    •  
    •  
    • 花岗岩样品

    图(13) / 表(3)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map