• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
砂泥岩地层岩性智能识别方法与应用—以新疆轮南侏罗系岩层为例
  • Title

    An intelligent lithology identification method for sandstone and mudstone strata and its applications: A case study of the Jurassic strata in the Lunnan area, Xinjiang, China

  • 作者

    蔡明周庆文杨聪陈枫伍东林旺章成广张远君苗雨欣

  • Author

    CAI Ming;ZHOU Qingwen;YANG Cong;CHEN Feng;WU Dong;LIN Wang;ZHANG Chengguang;ZHANG Yuanjun;MIAO Yuxin

  • 单位

    油气资源与勘探技术教育部重点实验室(长江大学)长江大学 地球物理与石油资源学院中钢集团武汉安全环保研究院有限公司中国石油集团工程技术研究院有限公司信息中心安徽省煤田地质局第三勘探队

  • Organization
    Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University
    College of Geophysics and Petroleum Resources, Yangtze University
    Wuhan Safety & Environmental Protection Research Institute Co., Ltd., Sinosteel
    Information Center, CNPC Engineering Technology R&D Company Limited
    Anhui Provincial Coal Geological Exploration Bureau Third Team
  • 摘要
    目的

    岩性识别是储层精细评价的基础,传统方法一般仅用2~3种测井参数的交互关系进行岩性识别,测井信息利用率低,对于岩性测井响应差异小的地层岩性识别精度低,严重制约了老井复查效果。高效的智能分类算法CatBoost可充分挖掘多源测井信息与岩性的关联。

    方法

    以新疆轮南地区侏罗系砂泥岩储层为研究对象,通过敏感性分析选取自然伽马、自然电位、深浅电阻率比值、声波时差和密度5个测井参数,构建基于CatBoost算法的岩性智能识别模型。利用优化的模型处理实际井资料以进行地层岩性识别,通过准确率、精确率和召回率综合评估模型的岩性识别效果,并对比分析了其与随机森林和KNN算法模型的识别效果。

    结果和结论

    结果表明:轮南侏罗系大类岩性包括泥岩、砂岩和砾岩,细分岩性复杂;根据岩性敏感测井参数利用CatBoost算法建立的岩性智能预测模型对目标储层细分岩性的识别准确率达92.64%,显著高于随机森林模型的82.95%和KNN模型的70.16%,证明该方法能有效解决研究区的岩性识别问题。研究成果不仅为轮南地区老井复查和进一步勘探开发提供了科学依据,还为复杂岩性精细识别方法研究提供重要参考。

  • Abstract
    Objective

    Lithology identification lays the foundation for fine-scale reservoir evaluation. However, traditional identification methods generally utilize the interactive relationships between only 2‒3 logging parameters, suffering from low utilization rates of logging information and low identification accuracy for strata with small differences in logging responses. This seriously restricts the effects of old well reexamination. The efficient, intelligent CatBoost classification algorithm can fully mine the correlations between multi-source logging information and lithology.

    Methods

    This study investigated the Jurassic sandstone and mudstone reservoirs in the Lunnan area, Xinjiang, China. Using five logging parameters determined through sensitivity analysis, i.e., natural gamma-ray value, spontaneous potential, deep and shallow resistivity ratio, sonic interval transit time, and density, this study developed an intelligent lithology identification model based on the CatBoost algorithm. The optimized model was employed to deal with actual logging data for lithology identification, and its performance was evaluated using accuracy, precision, and recall and was then compared with the lithology identification results of the random forest (RF) and k-nearest neighbors (KNN) algorithms.

    Results and Conclusions

    The results indicate that the large-scale lithologies of the Jurassic strata in the Lunnan area include mudstones, sandstones, and conglomerates, with complex fine-scale lithologies. In the identification of the fine-scale lithologies of the target reservoir, the intelligent lithology identification model, established using the CatBoost algorithm and lithology-sensitive logging parameters, yielded an accuracy of 92.64%, significantly higher than that of the random forest model (82.95%) and the KNN model (70.16%). This result demonstrates that the CatBoost model can effectively address of the challenges of lithology identification in the study area. The results of this study will provide a scientific basis for the review and further exploration and development of old wells in the Lunnan area. Besides, these results can serve as a valuable reference for research on methods for fine-scale identification of complex lithologies.

  • 关键词

    测井岩性识别人工智能CatBoost梯度提升算法

  • KeyWords

    logging;lithology identification;artificial intelligence (AI);CatBoost;gradient boosting algorithm

  • 基金项目(Foundation)
    国家自然科学基金项目(42104126, 42474177);中国石油科技创新基金项目(2022DQ02-0301);湖北省教育厅科学技术研究项目(Q20211309)
  • DOI
  • 引用格式
    蔡明,周庆文,杨聪,等. 砂泥岩地层岩性智能识别方法与应用−以新疆轮南侏罗系岩层为例[J]. 煤田地质与勘探,2025,53(1):235−244.
  • Citation
    CAI Ming,ZHOU Qingwen,YANG Cong,et al. An intelligent lithology identification method for sandstone and mudstone strata and its applications: A case study of the Jurassic strata in the Lunnan area, Xinjiang, China[J]. Coal Geology & Exploration,2025,53(1):235−244.
  • 图表
    •  
    •  
    • DT值趋势面法拟合结果

    图(6) / 表(5)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map