A monocular distance measurement method for underground track obstacles based on deep learning
许圆圆陈清华程迎松
XU Yuanyuan;CHEN Qinghua;CHENG Yingsong
安徽理工大学 机电工程学院安徽理工大学 环境友好材料与职业健康研究院安徽理工大学 矿山智能装备与技术安徽省重点实验室安徽理工大学 机械工业矿山装备智能化实验室
针对井下电机车行车过程中的防碰撞预警问题,提出了一种基于深度学习的井下轨道障碍物测距方法。结合Yolov5目标检测和UFLD轨道检测2种算法,借用轨道实际宽度不变的特性进行单目测距:首先使用Yolov5检测框底侧
Aiming at the problem of anti-collision warning during underground electric locomotive running, a deep learning-based obstacle location method for underground track is proposed. Combining Yolov5 target detection and UFLD track detection algorithms, the monocular distance measurement is carried out by using the property of constant actual track width. First, the
电机车智能控制防碰撞预警Yolov5目标检测UFLD轨道检测单目测距
intelligent control of electric locomotive;anti-collision warning;Yolov5 target detection;UFLD track detection;monocular distance measurement
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会