• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于改进YOLOv8n的井下人员多目标检测
  • Title

    Multi-target detection of underground personnel based on an improved YOLOv8n model

  • 作者

    问永忠贾澎涛夏敏高张龙刚王伟峰

  • Author

    WEN Yongzhong;JIA Pengtao;XIA Mingao;ZHANG Longgang;WANG Weifeng

  • 单位

    陕西陕煤蒲白矿业有限公司西安科技大学 计算机科学与技术学院西安科技大学 安全科学与工程学院

  • Organization
    Shaanxi Shanmei Pubai Mining Co., Ltd.
    College of Computer Science and Technology, Xi'an University of Science and Technology
    College of Safety Science and Engineering, Xi'an University of Science and Technology
  • 摘要

    针对井下危险区域人员监测视频存在光照不均匀、目标尺度不一致、遮挡等复杂情况,基于YOLOv8n网络结构,提出一种改进的井下人员多目标检测算法—YOLOv8n−MSMLAS。该算法对YOLOv8n的Neck层进行改进,添加多尺度空间增强注意力机制(MultiSEAM),以增强对遮挡目标的检测性能;在C2f模块中引入混合局部通道注意力(MLCA)机制,构建C2f−MLCA模块,以融合局部和全局特征信息,提高特征表达能力;在Head层检测头中嵌入自适应空间特征融合(ASFF)模块,以增强对小尺度目标的检测性能。实验结果表明:① 与Faster R−CNN,SSD,RT−DETR,YOLOv5s,YOLOv7等主流模型相比,YOLOv8n−MSMLAS综合性能表现最佳,mAP@0.5和mAP@0.5:0.95分别达到93.4%和60.1%,FPS为80.0帧/s,参数量为5.80×106个,较好平衡了模型的检测精度和复杂度。② YOLOv8n−MSMLAS在光照不均、目标尺度不一致、遮挡等条件下表现出较好的检测性能,适用于现场检测。

  • Abstract

    This study aims to address the complex challenges in monitoring underground personnel in hazardous areas, including uneven lighting, target scale inconsistency, and occlusion. An innovative multi-target detection algorithm, YOLOv8n-MSMLAS, was proposed based on the YOLOv8n network structure. The algorithm modified the Neck layer by incorporating a Multi-Scale Spatially Enhanced Attention Mechanism (MultiSEAM) to enhance the detection of occluded targets. Furthermore, a Hybrid Local Channel Attention (MLCA) mechanism was introduced into the C2f module to create the C2f-MLCA module, which fused local and global feature information, thereby improving feature representation. An Adaptive Spatial Feature Fusion (ASFF) module was embedded in the Head layer to boost detection performance for small-scale targets. Experimental results demonstrated that YOLOv8n-ASAM outperformed mainstream models such as Faster R-CNN, SSD, RT-DETR, YOLOv5s, and YOLOv7 in terms of overall performance, achieving mAP@0.5 and mAP@0.5: 0.95 of 93.4% and 60.1%, respectively,with a speed of 80.0 frames per second,the parameter is 5.80×106, effectively balancing accuracy and complexity. Moreover, YOLOv8n-ASAM exhibited superior performance under uneven lighting, target scale inconsistency, and occlusion, making it well-suited for real-world applications.

  • 关键词

    煤矿井下危险区域井下人员多目标检测YOLOv8n多尺度空间增强注意力机制自适应空间特征融合轻量化混合局部通道注意力机制

  • KeyWords

    underground hazardous areas in coal mines;multi-target detection of underground personnel;YOLOv8n;multi-scale spatially enhanced attention mechanism;adaptive spatial feature fusion;lightweight hybrid local channel attention mechanism

  • 基金项目(Foundation)
    陕西省重点研发计划(2022QCY−LL−70);陕西省秦创原“科学家+工程师”队伍建设项目(2023KXJ−052)。
  • DOI
  • 引用格式
    问永忠,贾澎涛,夏敏高,等. 基于改进YOLOv8n的井下人员多目标检测[J]. 工矿自动化,2025,51(1):31-37, 77.
  • Citation
    WEN Yongzhong, JIA Pengtao, XIA Mingao, et al. Multi-target detection of underground personnel based on an improved YOLOv8n model[J]. Journal of Mine Automation,2025,51(1):31-37, 77.
  • 图表
    •  
    •  
    • YOLOv8n−MSMLAS网络结构

    图(8) / 表(3)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map