Intelligent detection method of lightweight blasthole based on deep learning
岳中文金庆雨潘杉颜文婧覃逸峰陈震
YUE Zhongwen;JIN Qingyu;PAN Shan;YAN Wenjing;QIN Yifeng;CHEN Zhen
中国矿业大学(北京)力学与土木工程学院人工智能学院北京工商大学 电商与物流学院
在隧道(巷道)钻爆法施工过程中,智能装药可以取代人工作业,减少装药作业中危险事故的发生。然而,隧道中光线条件差、炮孔目标小和掌子面裂隙等因素会造成智能装药时炮孔的错检和漏检,同时车载计算机有限的算力也是制约炮孔识别大模型使用的难点。MCIW-2深度学习模型,可以解决在隧道掘进作业环境中的高精度炮孔检测和实时性部署问题。模型根据采集到的炮孔图像尺寸特征采取自适应锚框聚类算法优化检测框的长宽比尺寸参数;采用了具有动态非单调聚焦机制的损失函数
In the construction process of tunnel (roadway) drilling and blasting, intelligent charging can replace manual operation and reduce the occurrence of dangerous accidents in charging operation. However, some factors such as poor light conditions in the tunnel, small blasthole targets, and cracks in the tunnel face will cause the misdetection and missed detection of blastholes during intelligent charging. At the same time, the limited computing power of the vehicle-mounted computer is also a difficulty that restricts the use of large models for blasthole identification. The MCIW-2 deep learning model can solve the problem of high-precision blasthole detection and real-time deployment in the tunnel excavation environment. According to the size characteristics of the collected blasthole images, the model adopts the adaptive anchor frame clustering algorithm module to optimize the aspect ratio size parameters of the detection frame. The loss function
炮孔检测轻量化模型目标检测深度学习
blasthole detection;lightweight model;object detection;deep learning
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会