摘要
利用支持向量机(SVM)对两类问题良好的分离性能,将其应用于矿区土地覆盖变化检测,实现了基于SVM的变化检测算法.该算法计算了多时相遥感数据的差值影像,利用SVM将全部像素分类标记为变化和不变化两个类别,在不变区域中选择训练样本,对变化区域进行分类,获得前后时相地物类别信息,构建变化转移矩阵,描述详细变化信息.应用多时相先进对地观测卫星(ALOS)遥感数据对矿区土地覆盖变化进行试验,并与变化矢量分析、差值阈值法进行对比,结果表明:基于SVM的变化检测方法具有更好的检测效果,能够提供全面的变化类别和方向信息,可以有效应用于矿区土地覆盖动态监测.