• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于小波包与EKF-RBF神经网络辨识的瓦斯传感器故障诊断
  • 作者

    王军号孟祥瑞吴宏伟

  • 单位

    安徽理工大学计算机科学与工程学院安徽理工大学能源与安全学院安徽理工大学电气与信息工程学院

  • 摘要
    针对瓦斯传感器常见的偏置型、冲击型、漂移型和周期型4种突发型故障,以小波分析和RBF神经网络为基础,提出了由小波包分解提取特征能量谱与扩展Kalman滤波算法(EKF)优化的RBF神经网络进行模式分类辨识的瓦斯传感器故障诊断方法。对瓦斯传感器的输出信号进行小波包分解,运用基于代价函数的局域判别基(LDB)算法进行裁剪,获取最优的特征能量谱,经处理后作为特征向量训练EKF-RBF神经网络,采用参数增广和统计动力学方法,通过带有整定因子的EKF参数估计,用来辨识瓦斯传感器的故障类型。实验结果表明:该方法的辨识正确率在95%以上,误报率和漏报率都明显优于其他算法,能够有效用于瓦斯传感器的故障在线诊断。
  • 关键词

    瓦斯传感器小波包EKF-RBF神经网络故障诊断

  • 基金项目(Foundation)
    安徽高校省级自然科学研究重点资助项目(KJ2010A084);
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map