• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
随钻测井中岩性识别方法的对比及应用
  • 作者

    陈刚汪凯斌蒋必辞王小龙

  • 单位

    中国石油大学(华东)地球科学与技术学院中煤科工集团西安研究院有限公司

  • 摘要
    岩性识别是对地层认识及储层参数求解的基础,受沉积环境复杂性和非均质性影响,传统岩性识别方法已不能满足实际生产需要。针对传统识别方法容错能力差、自动化程度低和解释精度低的问题,通过应用神经网络自主学习预测分析手段,对比分析当下几种流行的岩性识别方法,选出更为适合现场实用的方法应用到随钻测井系统中。经研究发现,在预测方法及测井曲线相同的情况下,获得标准层段训练样本越多,准确率越高。通过对比得出结果:PNN概率神经网络方法在生产应用中效果更佳、识别准确率高、训练识别用时最短,在获取较少测井资料信息时,仍能保持较高的识别水平。
  • 关键词

    随钻测井岩性识别神经网络PNN

  • 相关文章
  • 相关专题
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map