• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
矿用动力电池荷电状态预测
  • 作者

    谈发明王琪

  • 摘要
    针对最小二乘支持向量机(LSSVM)用于预测矿用动力电池荷电状态(SOC)时正则化参数和核函数参数难以优化选择,灰狼优化(GWO)算法在单独求解约束优化问题时出现早熟、稳定性差、易陷入局部最优等问题,在差分进化灰狼优化(DE-GWO)算法的基础上,采用指数函数形式的非线性收敛因子对DEGWO算法进行改进。该非线性收敛因子在迭代过程前段衰减速率低,能更好地寻找全局最优解,在迭代过程后段衰减速率高,能更精确地寻找局部最优解,有效平衡全局搜索能力和局部搜索能力。实验结果表明,利用改进DE-GWO算法优化LSSVM参数后建立的矿用动力电池SOC预测模型最大绝对误差为3.7%,最大相对误差为5.3%。
  • 关键词

    矿用动力电池荷电状态灰狼优化算法差分进化最小二乘支持向量机收敛因子

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map