• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
矿山设备全生命周期信息集成与工况判别算法研究
  • Title

    Life-cycle information integration and working condition discriminational gorithm of mine equipment

  • 作者

    于嘉成王刚刘卫东宁永杰蒋晗晗

  • Author

    YU Jiacheng,WANG Gang,LIU Weidong,NING Yongjie,JIANG Hanhan

  • 单位

    矿山互联网应用技术国家地方联合工程实验室中国矿业大学信息与控制工程学院山东兖煤蓝天清洁能源有限公司

  • Organization
    1.The National Joint Engineering Laboratory of Internet Applied Technology of Mines,Xuzhou ,China;2.School of Information and Control Engineering,China University of Ming and Technology,Xuzhou ,China; 3.Shandong Yanmei Blue Sky Clean Energy Co.,Ltd.,Zoucheng ,China
  • 摘要

    针对矿山设备的全生命周期数据集成和设备大量监测数据信息挖掘问题,提出一种基于矿山物联网平台的设备全生命周期信息集成与工况判别算法。通过基于“逻辑设备-逻辑节点-数据类和数据属性”的分层模型结构完成数据的基本划分,采用松耦合方式完成基于矿山物联网平台的设备的全生命周期数据集成。最后,结合异常检测算法,提出了一种基于状态的设备监测数据判别算法,完成设备的工况判别。试验测试结果表明:结合从矿山物联网平台采集的设备运行检修阶段信息,利用Python语言完成用户接口构建,验证了集成方法的可行性,并以通风机设备为例验证了工况判别算法的有效性。

  • Abstract
    This paper proposes an information integration and condition recognition algorithm of mining equipment based on Mining Internet of Things(M-IoT)platform to solve the problem of data mining and integration in the life cycle.The basic data partition is completed by the hierarchical model structure,whose basis is logical device-logic node-class of data and data attributes.The whole life cycle data integration is accomplished by loose coupled way based on M-IoT.Finally,based on the anomaly detection algorithm,a “state based” device monitoring data discrimination algorithm is proposed to accomplish the condition discrimination of equipment.In the process of experiment,the information of equipment operation and maintenance phase is obtained from mine Internet of Things platform.The user interface is constructed by Python language,and the feasibility of the integration method is verified.Taking fan equipment as an example to verify the effectiveness of the algorithm.
  • 关键词

    设备全生命周期信息集成工况判别物联网平台Python语言

  • KeyWords

    life-cycle of equipment; information integration; discrimination of working condition; IoT platform;Python language

  • 相关专题
  • 图表
    •  
    •  
    • 矿山设备全生命周期数据

    图(3) / 表(0)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map