鲍倜傲王振帅马爱玲邢宝林张传祥侯磊袁绍辉赵晶郭梦瑶
河南理工大学 化学化工学院河南工业和信息化职业学院
超级电容器具有广泛的应用领域,但由于传统活性炭在能量密度和导电性方面不能充分满足社会对超级电容器的需求,严重限制了其在大型储能装置中的应用。因此,研发具有更高储能性能的材料具有重要意义。本文以资源丰富的太西无烟煤为前驱体,采用预炭化-KOH活化联合工艺制备新型煤基微晶炭,并将其用作超级电容器电极材料。利用X射线衍射(XRD)、低温N2吸附等手段表征煤基微晶炭的微晶结构及孔结构参数,并利用恒流充放电,循环伏安,交流阻抗等探究对应电极材料的电化学性能。结果表明,煤基微晶炭含有大量较为完整的类石墨微晶结构,且随着碱炭比用量的增加,类石墨微晶结构被逐步破坏,其层间距d002由0.391 5 nm逐渐增至0.405 9 nm。在碱炭比4∶1、活化温度800 ℃、活化时间为2 h的条件下,可制备出比表面积为928 m2/g、总孔容为0.527 cm3/g、中孔率为2646%的微晶炭。将该煤基微晶炭用作电极材料在以1 mol/L (C2H5)4NBF4/PC为电解液的超级电容器中,表现出优异的电化学性能:50 mA/g的电流密度下比电容为94.8 F/g,能量密度可达40.3 Wh/kg,在500 mA/g电流密度下1 000次循环后比电容保持率为87.3%,具有良好的循环稳定性,并且在阻抗曲线中体现出更小的离子扩散阻力和内部阻抗。首次充电过程中充电曲线发生折转,发生了“电活化”现象。这时,微晶炭片层周围的电解液离子和溶剂分子进行插层作用,利用片层空间充分储存电子以提高能量密度。煤基微晶炭的电容特性主要由插层电容和双电层电容2部分组成,其中“电活化”现象所造成的插层电容是决定微晶炭较高能量密度的主要原因。新型煤基微晶炭优异的电化学性能与其微晶结构和丰富的孔隙结构密切相关。
无烟煤微晶炭电极材料电化学性能
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会