饶中钰吴景涛 李明
中国矿业大学 信息与控制工程学院冀中能源股份有限公司 章村煤矿
针对人工排矸法、机械湿选法、γ射线分选法等传统煤矸石分选方法无法兼顾快速高效性、安全无害性、简单操作性的问题,提出了基于机器视觉的煤矸石图像分类方法。对煤矸石图像进行增强、平滑去噪等预处理,采用基于距离变换的分水岭算法实现煤矸石图像分割提取。针对煤矿矸石分割图像,选取煤矸石图像的HOG特征及灰度共生矩阵,分别以支持向量机、随机森林、K近邻算法作为分类器进行基于特征提取的煤矸石分类识别;分别建立浅层卷积神经网络和基于ImageNet数据集预训练的VGG16网络,进行基于卷积神经网络的煤矸石分类识别。研究结果表明,基于VGG16网络的煤矸石图像分类方法准确率最高为99.7%,高于基于特征提取方法的91.9%和基于浅层卷积神经网络方法的92.5%。
煤矸石分选煤矸石识别图像分类机器视觉卷积神经网络
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会