陈涛张占松周雪晴郭建宏肖航谭辰阳秦瑞宝余杰
长江大学 地球物理与石油资源学院油气资源与勘探技术教育部重点实验室(长江大学)中海油研究总院
随着煤层气勘探的不断深入,对煤层含气量预测精度提出了更高的要求。基于煤层含气量测井响应特征,分析测井参数与含气量的相关性,提出MIV(Mean Impact Value)技术与LSSVM(Least Squares Support Vector Machine)结合的测井参数优选策略,优选最优测井参数作为网络建模的输入自变量组合,通过粒子群算法优化LSSVM网络核心参数,最后构建一套适用于煤层含气量预测的MIV-PSO-LSSVM模型。在此基础上,分别对比分析LSSVM、PSO-LSSVM、MIV-LSSVM和MIV-PSO-LSSVM模型对煤层含气量的预测性能,并与传统多元回归方法进行了对比,利用拟合优度和均方根误差对此5类模型进行评价。结果表明:PSO优化下的LSSVM模型预测精度得到有效提升,结合MIV方法优选测井参数可大幅度改善神经网络建模性能,MIV-PSO-LSSVM模型可实现煤层含气量高精度预测,为煤层气勘探及其储层评价提供新的技术支撑,且本研究的建模策略及思想可广泛应用于其他机器学习建模研究领域。
煤层气含气量MIVLSSVM粒子群算法测井曲线
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会