• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于Q—学习算法的矿井自适应OFDM调制研究
  • 作者

    朱静茹张育芝王安义李萍

  • 单位

    西安科技大学通信与信息工程学院

  • 摘要

    针对传统基于固定信噪比门限的自适应OFDM(正交频分复用)调制技术应用于复杂矿井信道时,由于反馈信道状态与实际信道状态不能完全匹配,导致误码率高和吞吐量低的问题,提出了一种基于Q-学习算法的自适应OFDM调制方法,并将其应用于矿井自适应OFDM调制系统。该系统由发送端、矿井无线信道和接收端组成,发送端为矿井下装有传感器的小车,可以在狭长的巷道内自由移动。发送端利用Q-学习算法在与矿井无线信道的动态交互中不断更新状态-动作值函数,并根据更新的状态-动作值函数,采用贪婪策略来选择调制方式,逼近最优自适应调制策略,以达到降低系统误码率、提高通信吞吐量的目的。与基于SARSA算法、固定信噪比门限的2种矿井自适应OFDM调制系统性能进行仿真对比,结果表明:矿井小车在匀速和移动速度变化状态下,基于Q-学习算法的自适应OFDM调制系统平均误码率分别为1.1×10-3,2.1×10-3,总吞吐量分别为3 115 bit,2 719 bit,均优于基于SARSA算法和固定信噪比门限的自适应OFDM调制系统,且系统中Q-学习算法收敛速度优于SARSA算法。


  • 关键词

    矿井无线通信 信道自适应调制 正交频分复用 强化学习 Q-学习算法 SARSA算法 OFDM

  • 相关文章
  • 相关专题
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map