张俭让刘睿卿李学文王智鹏史振东
西安科技大学安全科学与工程学院教育部西部矿井开采及灾害防治重点实验室
针对采煤机大量运行状态数据不能得到及时处理的问题,研究了基于Storm的采煤机运行状态数据分布式实时预测模型。结合采煤机实际运行状态数据,通过Hadoop分布式存储数据库模拟采煤机运行状态实时数据流;通过Storm分布式实时大数据处理框架处理大量采煤机运行状态时间序列数据,采用门控循环单元(GRU)作为预测模型,实现对采煤机运行状态数据的实时预测;结合各类数据的阈值设定,实现故障预警。以某矿综采工作面MG400930-WD电牵引采煤机的数据为例,取截割部电动机电流、截割部电动机温度、牵引部电动机电流、牵引部电动机转速、调高泵工作压力、调高泵工作转速、冷却水压、变频器电流8种监测数据作为实验数据,对预测模型进行训练和测试,结果表明:预测模型收敛速度较快,且拟合优度达到0.9以上;除冷却水压外,其余数据的预警准确率均达到95%以上;处理速度快,整个预警过程共10s左右,可满足应用要求。
采煤机运行状态数据时间序列数据状态预测预警Storm门控循环单元Hadoop
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会