周宇杰徐善永黄友锐唐超礼
安徽理工大学电气与信息工程学院
针对现有输送带损伤检测方法检测精度低、检测速度慢且缺少对面积较小损伤检测的问题,提出了一种基于改进YOLOv4的输送带损伤检测方法。该方法以YOLOv4为基础,对PANet路径融合网络部分进行改进,增加与浅层特征层的融合,将原3个尺度的特征层融合增加到4个尺度,提高模型对输送带损伤的特征提取能力,提高检测精度;将PANet部分每个特征层融合后的卷积次数由5次减少到3次,减少计算量,提高检测速度;对输送带损伤图像进行标注,并输入改进的YOLOv4模型进行训练和测试。实验结果表明,基于改进YOLOv4的输送带损伤检测方法损失收敛速度快,模型训练效果好;基于改进YOLOv4的输送带损伤检测方法对输送带撕裂、表面磨损和表面缺陷检测的平均精度均值达96.86%,检测速度达20.66帧/s,与YOLOv4,YOLOv3和Faster-RCNN相比,平均精度均值分别提升了1.4%,6.35%,2.16%,检测速度分别提升了2.39,2.34,15.25帧/s;与YOLOv4相比,基于改进YOLOv4的输送带损伤检测方法检测精度更高,对面积较小损伤的检测效果更好。
带式输送机输送带损伤检测YOLOv4深度学习PANet特征层融合
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会