• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
低阶煤活性焦的结构调控及基于机器学习的有机污染物吸附特性评价
  • Title

    Structure control of activated coke from low-rank coal and evaluation of adsorption characteristics of organic pollutants based on machine learning

  • 作者

    贺琼琼李欣源苗真勇韩超王国强徐瑗张明亮

  • Author

    HE Qiongqiong,LI Xinyuan,MIAO Zhenyong,HAN Chao,WANG Guoqiang,XU Yuan,ZHANG Mingliang

  • 单位

    中国矿业大学 国家煤加工与洁净化工程技术研究中心中国矿业大学 化工学院内蒙古伊泰京 粤酸刺沟矿业有限公司

  • Organization
    National Engineering Research Centerof Coal Preparation and Purification,China University of Mining and Technology; School of Chemical Engineering,China University of Mining and Technology; Inner Mongolia Yitai Jingyue Acid Cigou Mining Co.,Ltd.
  • 摘要

    有机污染物在多级孔吸附材料上的吸附过程中微孔结构很大程度上决定了吸附剂的比表 面积为吸附质提供吸附位点而介孔和大孔可以为吸附质提供传质通道和吸附空间因此微孔介孔-大孔的多级孔结构优化配置对提高吸附剂的吸附效果至关重要。 以万利长焰煤(WL)与昭 通褐煤(ZT)为原料制备一系列低阶煤活性焦通过扫描电镜(SEM)、N吸附傅里叶红外光 谱(FTIR)对不同活性焦的物理化学结构进行表征。 系统地研究了低阶煤的炭化活化过程对其孔 隙结构和化学结构的影响并针对性制备多级孔活性半焦并与选取的有机污染物进行匹配达到 最佳吸附效果。 最后通过机器学习方法实现对活性焦吸附效果的预测以及各因素重要程度的分 析。 结果表明:活性焦孔结构得到充分发育孔结构发育程度不同的活性焦对不同分子量的有机物 表现出吸附性能的差异万利(昭通)活性焦对吲哚酸性红 A刚果红直接耐晒蓝 B2RL 四种有机 污染物的吸附量可达 117.11(135.80),104.24(138.56),239.44(313.94),214.86(183.74)mg/ g。 结 合基于机器学习的主因素分析可知活性焦在吸附小分子污染物时比表面积和孔容对吸附量有主 导作用在吸附大分子污染物时孔容和平均孔径影响较大。 基于吸附质分子结构和尺寸特征达 到吸附剂多级孔与吸附质的结构适配为廉价吸附剂制备提供了新的思路


  • Abstract

    In the adsorption process of organic pollutants on hierarchical pore adsorbents,the microporous structure largely determines the specific surface area of the adsorbent and provides adsorption sites for adsorbates. Mesopores and macropores can provide mass transfer channels and adsorption space for adsorbates,so the optimized configuration of the micropore⁃mesopore⁃macropore hierarchical pore structure is very important to improve the adsorption effect of the adsorbent. A series of low⁃rank active cokes were prepared from Wanli long⁃flame coal(WL)and Zhaotong lignite(ZT)as raw materials. The physicochemical structures of different active cokes were characterized by scanning electron microscopy(SEM),Nadsorption and Fourier transform infrared spectroscopy(FTIR). The effect of carboni⁃ zation and activation of low⁃rank coal on its pore structure and chemical structure was systematically studied, and the multi⁃porous activated semi⁃coke was prepared and matched with the selected organic pollutants to achieve the best adsorption effect. Finally,machine learning methods are used to predict the adsorption effect of activated coke and analyze the importance of each factor. The results show that the pore structure of activated coke is fully developed. Ac⁃ tivated coke with the different levels of pore structure development shows some differences in adsorption performance to the organics with different molecular weights. The adsorption capacity of Wanli ( Zhaotong ) activa⁃ ted coke for four organic pollutants,i.e.,indole,acid red A,Congo red and direct light fast blue B2RL,can reach 117.11(135.80),104.24(138.56),239.44(313.94) and 214.86(183.74) mg/ g respectively. With the analysis of main factors based on machine learning,it can be seen that when the activated coke adsorbs small molecule pollu⁃ tants,the specific surface area and pore volume have a dominant effect on the adsorption capacity. When adsorbing large molecule pollutants,the pore volume and average pore size have a greater influence. Based on the molecular structure and size characteristics of the adsorbate,the structure matching of the adsorbent’s hierarchical pores and the adsorbate provides a new idea for the preparation of cheap adsorbents.


  • 关键词

    低阶煤活性焦有机污染物吸附机器学习

  • KeyWords

    low⁃rank coal;activated coke;organic pollutants;adsorption;machine learning

  • 引用格式
    贺琼琼,李欣源,苗真勇,等. 低阶煤活性焦的结构调控及基于机器学习的有机污染物吸附特性评价[ J] .煤炭学报,2021,46(S2):1077-1087.
  • Citation
    HE Qiongqiong,LI Xinyuan,MIAO Zhenyong,et al. Structure control of activated coke from low-rank coal and evaluation of adsorption characteristics of organic pollutants based on machine learning[J]. Journal of China Coal Society,2021,46(S2):1077-1087.
  • 相关文章
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map