• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于神经网络的潮湿煤炭气流分级效果预测
  • Title

    Prediction of airflow classification effect of wet coal based on BP neural network

  • 作者

    郎军贺琼琼范徐萌黄鹏飞章新喜

  • Author

    LANG Jun,HE Qiongqiong,FAN Xumeng,HUANG Pengfei,ZHANG Xinxi

  • 单位

    中国矿业大学 煤炭加工与高效洁净利用教育部重点实验室中国矿业大学 化工学院内蒙古仲泰能源有限公司

  • Organization
    Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education,China University of Mining & Technology;School of Chemical Engineering and Technology,China University of Mining and Technology;Inner Mongolia Yitai Group
  • 摘要

    潮湿煤炭给选煤厂筛分作业带来了极大困难而气流分级技术可以有效地解决这一问题。 在进行潮湿煤炭的分级过程中通过预先对实际的分级效果能进行预测进而实现对分级过程进行 自动控制。 人工智能为分级过程模型的建立提供了新的方法。 基于神经网络应用 Python 语言建 立了气流分级效果预测模型以内蒙古伊泰集团煤样为研究样品进行不同条件下 50 组气流分级试 验通过将试验数据随机打乱选择 45 组数据作为训练集对机器进行训练学习组作为检测集, 选择气流分级试验中初始含水率有无振动分级时间 个因素作为神经网络的输入将粗粒级和 细粒级 个大粒级中的>63 ~ 6<3 mm 粒级的含量作为输出通过交叉验证的方式寻找神经网络 的最佳参数。 训练了 个 BP 神经网络 NN1 和 NN2。 神经网络 NN1包含一个隐藏层隐藏层神经 元数量为 选取的激活函数是 tanh;NN2 神经网络包含 个隐藏层隐藏层神经元数量分别为 和 选取的激活函数是 identity。 NN1 在预测的整体上优于第 个神经网络尤其是粗粒级 3~6<3 mm 和细粒级>63~6<3 mm 这 个级别预测结果优于第 个神经网络但对于粗粒集> 6 mm 这一级别的预测结果存在较大的偏差。 NN2 整体预测结果较为平均整体偏差不大对于粗 粒级>6 mm 这一项的预测结果与其他项预测较为接近明显优于第 个神经网络在整体预测上 表现更好NN2 >6 mm 粗粒级预测上优于 NN1。 将 个网络结合起来粗粒级>6 mm 的采用神 经网络 NN2 的结果粗粒级 3 ~ 6<3 mm 和细粒级>63 ~ 6<3 mm 这 个预测结果采用 NN1 的预 测结果作为最后的预测结果可提高预测的精度最后模型的决定系数 R为 0.917 8能对输入数据 进行较好的拟合


  • Abstract

    Wet and sticky raw coal normally results in great difficulties to the deep screening of coal preparation plants. The airflow classification technology can effectively overcome the problem of screen blending. The actual classification effect can be predicted by pre⁃establishing the mathematical model of the airflow classification process,and then the online control of the airflow classifier can be carried out,which can improve the grading effect of the airflow technolo⁃ gy. The paper established an artificial neural networks predictive model of airflow classification effect based on the py⁃ thon language,and selected the coal from Inner Mongolia Yitai Group as research sample. 50 groups of data under dif⁃ ferent classification conditions were obtained through experiments and 45 groups were randomly selected as training sets,5 groups as detection sets. Three factors of initial water content,vibration or no vibration,and grading time were selected as the input of the neural network,and the content of particles with size >6,3-6,<3 mm in the two coarse and fine⁃grain levels was taken as the output to find the best parameters of the neural network through cross⁃verifica⁃ tion. Two BP artificial neural network NN1 and NN2 were trained. The neural network NN1 included a hidden layer,the neuronal number of hidden layer was 6,and the selected activation function was tanh. The NN2 neural net⁃ work included two hidden layers,the neuronal numbers of hidden layers were 5 and 7,and the selected activation func⁃ tion was identity. The results show that the NN1 outperforms the second neural network as a whole,especially at the five levels of coarse 3-6 mm,<3 mm and fine⁃grained >6 mm,3-6 mm,and <3 mm,but deviates greatly for the coarse⁃grained >6 mm size. The overall prediction results of the NN2 are relatively average and small overall devi⁃ ation. The prediction results of coarse⁃grained >6 mm are similar to other predictions,obviously better than that of the first neural network and better in the overall prediction. The NN1 performs better overall predictions but the NN2 out⁃ performs NN1 in coarse grain set >6 mm prediction. Combining the two networks,the results of NN2 for coarse⁃grained >6 mm,and the results of NN1 for coarse⁃grained 3-6 mm,<3 mm and fine⁃grained >6 mm,3-6 mm,<3 mm as the final prediction result can improve the accuracy of the prediction,the model’s decision coefficient Ris set to 0.917 8, which can better fit the input data.


  • 关键词

    潮湿煤炭气流分级预测模型BP 神经网络

  • KeyWords

    wet coal;classification effect;prediction;BP neural network

  • 引用格式
    郎军,贺琼琼,范徐萌,等. 基于神经网络的潮湿煤炭气流分级效果预测[J].煤炭学报,2021,46(S2):1001-1010.
  • Citation
    LANG Jun,HE Qiongqiong,FAN Xumeng,et al. Prediction of airflow classification effect of wet coal based on BP neural network[J]. Journal of China Coal Society,2021,46(S2):1001-1010.
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map