Study on Stability of Antimony Carbon Anode of Lithium-ion Battery under Compressive Loading
孙维岩孟伟嘉赵松楠郭春丽郭美卿
SUN Weiyan;MENG Weijia;ZHAO Songnan;GUO Chunli;GUO Meiqing
太原理工大学机械与运载工程学院太原理工大学材料科学与工程学院山西省材料强度与结构冲击重点实验室
采用锑碳复合材料作为负极活性材料组装纽扣锂离子电池,对其进行准静态平板和接触(钢球)挤压加载实验,研究其在载荷作用下的电化学循环稳定性、电极表面裂纹及其失效。结果表明,在0~960 N 的范围内,接触压缩载荷和准静态平板载荷均会对电池容量造成损伤,随着载荷增大,电极表面裂纹越大,活性材料剥落越多,导致可逆容量损失越大。接触压缩载荷作用后,电池外壳出现凹陷,电极表面形成较大裂纹,导致电池可逆容量大幅度下降,循环稳定性差;准静态平板载荷作用后,电池可逆容量损失较小,循环稳定性没有明显变化,归因于电池外壳的保护作用。该研究为锑碳负极材料在压缩载荷作用下的失效提供了参考。
Antimony carbon composite was used as active materials in the anode to assemblebutton lithium-ion batteries (LIBs), and quasi-static plate and contact (steel balls) extrusionloading experiments were carried out. The cycling stability, crack morphology of electrode, andfailure of LIBs were investigated. The results indicate the quasi-static plate and contact (steelballs) extrusion load cause the decrease of reversible capacity, and the reversible capacity loss ispositively correlated with quasi-static plate and contact load compression load, which can be attributedto increased width of cracks and peeling off of active materials with increasing compressionload in the range of 0-960 N. In addition, the contact compression load causes lagre reversiblecapacity decrease and poor cycling performance, which can be related to large cracks, concavearea, and fracture on the electrode formed under contact compression load. The quasi-static plate load causes little reversible capacity loss and no obvious decease of cycling performance, which isattributed to the protective effect of the battery shell. These conclusions provide a reference forthe failure study of antimony carbon anode materials under mechanical load.
锂离子电池锑碳负极准静态平板载荷接触载荷
lithium-ion battery; antimony carbon anode; quasi-static plate load; contact load
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会