A review of fly ash-based paste filling deamination methods
李亚娇鱼郑鞠恺任武昂唐仁龙金鹏康
LI Yajiao;YU Zheng;JU Kai;REN Wuang;TANG Renlong;JIN Pengkang
西安科技大学 建筑与土木工程学院西安科技大学 能源学院西安交通大学 人居环境学院
在论述粉煤灰基膏体充填技术现状的基础上,进一步探讨了粉煤灰基膏体充填中氨气释放所引起的井下空气环境恶化问题。通过分析氨气产生机理,发现由于粉煤灰中吸附的NH4 HSO4和(NH4)2SO4易溶于水且会生成NH4+,其在碱性环境下会转换为NH3释放出来。研究表明,现有的粉煤灰固体中吸附氨的去除方法,如加碱法、氧化法和加热法,都可将氨去除到合适范围,满足粉煤灰正常使用。但由于加碱法与氧化法需添加药剂且后续要将脱氨处理的粉煤灰加热干燥,加热法对热源有较高要求,高昂的成本使这些方法不能在粉煤灰基膏体充填脱氨处理中广泛应用。将粉煤灰制成浆液,并借鉴污水中物理化学脱氨的基础理论,提出用吹脱法、折点加氯法和磷酸铵镁沉淀法去除浆液中氨的技术措施。其中,吹脱法脱氨效果稳定且不需额外添加药剂,折点加氯法和磷酸铵镁沉淀法理论上可将浆液中的氨完全去除,但所需加药量大,且对加药量难以控制,影响氨的去除效果以及粉煤灰的性能。通过综合比较上述脱氨方法的技术特点,结合经济评价认为用吹脱法处理粉煤灰浆液的氨氮具有较好的工程应用前景。后续研究可通过试验或模拟的方式,优化吹脱法去除粉煤灰浆液中氨的操作条件,以期获得更好的脱氨效果。此外,还需持续关注脱氨后的粉煤灰浆液所配制充填膏体的性能。
On the basis of discussing the status of fly ash-based paste filling technology, this paper further discusses the deterioration of downhole air environment caused by ammonia release in fly ash-based paste filling. By analyzing the mechanism of ammonia generation, it was found that NH4 HSO4 and (NH4)2SO4 adsorbed in fly ash are soluble in water and generate NH4+, which will be converted to NH3 and released under alkaline environment. It is studied that the existing methods for removing ammonia adsorbed in fly ash solids, such as alkali addition, oxidation and heating methods, can remove ammonia to an appropriate range and meet the normal use of fly ash. However, since the alkali addition method and the oxidation method need to add chemicals and the fly ash after deamination treatment needs to be heated and dried, the heating method has higher requirements on the heat source, and the high cost makes these methods can not be widely used in the deamination treatment of fly ash-based paste filling. The fly ash is made into slurry, and the basic theory of physical and chemical deamination in sewage is used for reference, and the technical measures to remove ammonia in slurry by stripping method, break-point chlorination method and magnesium ammonium phosphate method are proposed. Among them, the stripping method is stable and does not require additional chemicals, while the break-point chlorination method and magnesium ammonium phosphate method can theoretically remove ammonia from slurry completely, but the required dosage is large, and it is difficult to control the dosage, which affects the ammonia removal effect and the performance of fly ash. Through a comprehensive comparison of the technical characteristics of the above deamination methods, combined with the economic evaluation that the stripping method for treating fly ash slurry has good prospects for engineering applications. Subsequent studies can optimize the operating conditions for the removal of ammonia from fly ash slurry by the stripping method through experiments or simulations, with a view to obtaining better deamination results. In addition, the performance of the filled paste formulated from the deaminated fly ash slurry needs to be paid continuous attention.
粉煤灰膏体充填氨气脱氨吹脱法
fly ash;paste filling;ammonia;deamination;stripping method
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会