• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
矿井视觉计算体系架构与关键技术
  • Title

    Architecture and key technologies of coalmine underground vision computing

  • 作者

    程健李昊马昆刘斌孙大智马永壮殷罡王广福李和平

  • Author

    CHENG Jian;LI Hao;MA Kun;LIU Bin;SUN Dazhi;MA Yongzhuang;YIN Gang;WANG Guangfu;LI Heping

  • 单位

    煤炭科学研究总院有限公司 矿山大数据研究院天地科技股份有限公司煤炭智能开采与岩层控制全国重点实验室国家能源集团宁夏煤业有限责任公司 金家渠煤矿国家能源集团宁夏煤业有限责任公司 羊场湾煤矿

  • Organization
    Research Institute of Mine Big Data, Chinese Institute of Coal Science
    Tiandi Science and Technology Co., Ltd.
    State Key Laboratory for Intelligent Coal Mining and Strata Control
    Jinjiaqu Coal Mine, CHN Energy Ningxia Coal Industry Co., Ltd.
    Yangchangwan Coal Mine, CHN Energy Ningxia Coal Industry Co., Ltd
  • 摘要
    煤矿井下特别是采掘工作面空间狭窄、装备众多、工艺条件及环境复杂、隐蔽致灾隐患多,因此实现智能化无人操作一直是煤炭行业内的普遍需求。建立有效的面向煤矿井下应用的视觉计算理论是实现煤矿智能化无人开采的重要一环。矿井视觉计算的主要任务是针对矿井这一特定应用领域,研究煤矿井下环境的感知、描述、识别和理解模型与框架,以使智能装备具有通过图像或视频感知煤矿井下三维环境信息,增强煤矿井下环境感知能力。为了有效推进该理论与实践的结合发展,使其更好地服务于煤矿智能化建设,首先围绕煤矿井下视觉计算的基本概念,分析计算机视觉与矿井视觉计算的异同,总结提出煤矿井下视觉计算的组成架构体系。然后,详细介绍煤矿井下视觉计算所涉及的视觉感知与增强、特征提取与特征描述、语义学习与视觉理解、三维视觉与空间重建、感算一体与边缘智能等关键技术,并从矿井视频智能识别、预警与机器人定位、导航等方面简要介绍视觉计算在煤矿井下的典型应用案例。最后给出煤矿井下视觉计算的发展趋势和展望,重点总结分析了目前矿井视觉计算在煤矿井下应用中存在的关键技术难题和矿井增强现实/混合现实、平行智能采矿2种重要的发展方向。随着煤矿井下视觉计算理论的不断突破和完善,矿井视觉计算在煤矿智能化发展中必将发挥越来越重要的作用。
  • Abstract
    It has always been a common demand to stay away from the harsh environment with narrow space, numerous devices, complex operation process, and hidden hazards, and realize intelligent unmanned mining in the coal industry. To achieve this goal, it is very necessary for us to develop an effective theory of vision computing for underground coalmine applications. Its main task is to build effective models or frameworks for perceiving, describing, recognizing and understanding the environment of underground coalmine, and let intelligent equipment get 3D environment information in coalmine from images or videos. To effectively develop this theory and make it better for intelligent development of coalmine, this paper first analyzed the similarities and differences about computer vision and visual computing in coalmine, and proposed its composition architecture. And then, this paper introduced in detail the key technologies involved in visual computing in coalmine including visual perception and light field computing, feature extraction and feature description, semantic learning and vision understanding, 3D vision reconstruction, and sense computing integration and edge intelligence, which is followed by typical application cases of visual computing in coalmines. Finally, the development trend and prospect of underground visual computing in coalmine was given. In this section, this paper focused on concluding the key challenges and introducing two valuable applications including coalmine Augmented Reality/Mixed Reality and parallel intelligent mining. With the breakthrough of underground vision computing, it will play a more and more important role in the intelligent development of coal mines.
  • 关键词

    视觉计算视觉感知空间重建煤矿智能化平行智能采矿

  • KeyWords

    vision computing;visual perception;3D reconstruction;intelligent coalmine;parallel smart mining

  • 基金项目(Foundation)
    天地科技股份有限公司科技创新创业资金专项重点资助项目(2021-TD-ZD002,2022-2-TD-ZD001);煤炭科学研究总院创新创业科技专项资助项目(2021-JSYF-004)
  • DOI
  • 引用格式
    程 健,李 昊,马 昆,等. 矿井视觉计算体系架构与关键技术[J]. 煤炭科学技术,2023,51(9):202−218
  • Citation
    CHENG Jian,LI Hao,MA Kun,et al. Architecture and key technologies of coalmine underground vision computing[J]. Coal Science and Technology,2023,51(9):202−218
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 矿井视觉计算的体系架构

    图(10) / 表(0)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map