• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
雅致小克银汉霉与芽孢杆菌联合降解义马煤产腐植酸
  • Title

    Humic acid production from the degradation of Yima coal by Cunninghamella elegans combined with Bacillus sp.

  • 作者

    陈林勇刘建民崔宇翔任恒星赵晗赵娜宋燕莉关嘉栋牛江露李国富王保玉何环

  • Author

    CHEN Linyong;LIU Jianmin;CUI Yuxiang;REN Hengxing;ZHAO Han;ZHAO Na;SONG Yanli;GUAN Jiadong;NIU Jianglu;LI Guofu;WANG Baoyu;HE Huan

  • 单位

    河南理工大学 资源环境学院煤与煤层气共采国家重点实验室易安蓝焰煤与煤层气共采技术有限责任公司中国矿业大学 化工学院中国矿业大学 煤炭加工与高效洁净利用教育部重点实验室

  • Organization
    Institute of Resources and Environment, Henan Polytechnic University
    State Key Laboratory of Coal and CBM Co-mining
    Yi’an Lanyan Coal and Coalbed Methane Simultaneous Extraction Technology Co., Ltd.
    School of Chemical Engineering, China University of Mining and Technology
    Key Laboratory of Coal Processing and Clean Utilization of Ministry of Education, School of Chemical Engineering, China University of Mining and Technology
  • 摘要
    微生物降解是煤炭清洁高效利用的重要方式之一,但真菌细菌联合培养对煤的降解效果尚无定论。以雅致小克银汉霉(Cunninghamella elegans)和芽孢杆菌(Bacillus sp.)为降解菌,以硝酸氧化的义马煤为底物进行了煤的联合降解实验。利用紫外−可见分光光度计、pH计、电感耦合等离子体质谱仪对降解液的吸光度A450、pH、金属元素(Cr、As、Mn、Pb、Co、Ni、Cu、Zn、Mo)质量浓度进行测定。利用元素分析仪、红外光谱仪、气质联用仪对产物腐植酸进行分析。研究结果显示雅致小克银汉霉(Cunninghamella elegans)、芽孢杆菌(Bacillus sp.)、混合菌的腐植酸产率分别为58.17%、61.00%、67.17%,混合菌降解液的pH与细菌接近,混合菌降解的腐植酸样品中检出细菌的特征性产物而真菌的特征性产物则未检出,说明两株菌联合强化了碱性环境,提高了硝酸氧化煤的降解率,降解过程中细菌起主导作用。金属元素(Cr、As、Mn、Pb、Co、Ni、Cu、Zn、Mo)在降解过程中从煤迁移到了降解液,其中Cr、As、Pb、Ni、Cu、Mo的质量浓度与A450拟合的判定系数(R2)大于0.6,说明降解液中这6种金属元素的质量浓度可表征降解率的相对大小。化学提取腐植酸与生物提取腐植酸均富含羧基、羟基、羰基等活性官能团、长链脂肪酸(C16、C18)和4种吡咯衍生物,生物提取腐植酸还含有分子量较小的脂肪酸(C3、C4、C5、C13、C14、C15)、2种吡咯衍生物和呋喃等含氮化合物,生物提取腐植酸的C、H元素质量分数高于化学提取腐植酸。
  • Abstract
    Biodegradation is one of the important ways for the clean and efficient utilization of coal. However, the effectiveness of degradation by the combination of fungi and bacteria has not been well understood. In the present study, the combined degradation of the Yima coal was tested. The coal samples were firstly oxidized with nitric acid, followed by cultured in the media of Cunninghamella elegans and Bacillus sp.. The absorbance of A450, pH and metallic element (Cr, As, Mn, Pb, Co, Ni, Cu, Zn, Mo) contents of the degradation solution were determined by UV-visible spectrophotometry, pH meter and inductively coupled plasma mass spectrometry, respectively. The humic acid was analyzed by element analyzer, Fourier transform infrared spectroscopy and gas chromatog-raphy-mass spectrometry. The results showed that the humic acid yields of C. elegans, Bacillus sp. and their mixture were 58.17%, 61.00% and 67.17%, respectively. The pH of the degradation solution of mixed strains was similar to that of the bacteria. The characteristic products of the bacteria degradation were detected in the humic acid samples derived from mixed strains, while the opposite was true for the fungi. It was suggested that the combination of the two strains enhanced the alkaline environment and improved the degradation rate of nitric acid-treated coal. The bacteria played a leading role in the degradation process. Metallic elements (Cr, As, Mn, Pb, Co, Ni, Cu, Zn, Mo) were transferred from coal to the degradation solution during the degradation process, and the contents of Cr, As, Pb, Ni, Cu and Mo were fitted with A450, the coefficient of determination (R2) were greater than 0.6. It indicated that the contents of these six metal elements in the degradation solution could represent the degradation rate. Chemically extracted humic acid and biologically extracted humic acid were rich in the active functional groups such as carboxyl, hydroxyl, carbonyl, long-chain fatty acids (C16, C18) and four pyrrole derivatives. The biologically extracted humic acid also contained fatty acids (C3, C4, C5, C13, C14, C15), of smaller molecular weight, as well as nitrogen-containing compounds such as two pyrrole derivatives and a furan. The contents of C and H elements in the biologically extracted humic acid were higher than that in the chemically extracted humic acid.
  • 关键词

    雅致小克银汉霉芽孢杆菌微生物降解金属元素义马煤

  • KeyWords

    Cunninghamella elegans ; Bacillus sp.;biodegradation of coal;metallic elements;Yima coal

  • 基金项目(Foundation)
    国家自然科学基金资助项目(42230804,42172187)
  • DOI
  • 引用格式
    陈林勇,刘建民,崔宇翔,等. 雅致小克银汉霉与芽孢杆菌联合降解义马煤产腐植酸[J]. 煤炭学报,2023,48(11):4224−4232.
  • Citation
    CHEN Linyong,LIU Jianmin,CUI Yuxiang,et al. Humic acid production from the degradation of Yima coal by cunninghamella elegans combined with bacillus sp.[J]. Journal of China Coal Society,2023,48(11):4224−4232.
  • 图表
    •  
    •  
    • 不同组降解液吸光度与腐植酸质量变化趋势

    图(8) / 表(0)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map