• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
融合坐标注意力与多尺度特征的轻量级安全帽佩戴检测
  • Title

    Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature

  • 作者

    李忠飞冯仕咏郭骏张云鹤徐飞翔

  • Author

    LI Zhongfei;FENG Shiyong;GUO Jun;ZHANG Yunhe;XU Feixiang

  • 单位

    内蒙古电投能源股份有限公司 北露天煤矿中国矿业大学 信息与控制工程学院北京和利时数字技术有限公司

  • Organization
    North Open-pit Coal Mine, Inner Mongolia Power Investment Energy Co., Ltd.
    School of Information and Control Engineering, China University of Mining and Technology
    Beijing Hollysys Digital Technology Co., Ltd.
  • 摘要

    针对现有煤矿工人安全帽佩戴检测算法存在检测精度与速度难以取得较好平衡的问题,以YOLOv4模型为基础,提出了一种融合坐标注意力与多尺度的轻量级模型M−YOLO,并将其用于安全帽佩戴检测。该模型使用融入混洗坐标注意力模块的轻量化特征提取网络S−MobileNetV2替换YOLOv4的特征提取网络CSPDarknet53,在减少相关参数量的前提下,有效改善了特征之间的联系;将原有空间金字塔池化结构中的并行连接方式改为串行连接,有效提高了计算效率;对特征融合网络进行改进,引入具有高分辨率、多细节纹理信息的浅层特征,以有效加强对检测目标特征的提取,并将原有Neck结构中的部分卷积修改为深度可分离卷积,在保证检测精度的前提下进一步降低了模型的参数量和计算量。实验结果表明,与YOLOv4模型相比,M−YOLO模型的平均精度均值仅降低了0.84%,但计算量、参数量、模型大小分别减小了74.5%,72.8%,81.6%,检测速度提高了53.4%;相较于其他模型,M−YOLO模型在准确率和实时性方面取得了良好的平衡,满足在智能视频监控终端上嵌入式加载和部署的需求。

  • Abstract

    The existing algorithm for detecting the helmet wear by coal miners has the problem of difficulty in achieving a good balance between detection accuracy and speed. In order to solve the above problem, based on the YOLOv4 model, a lightweight model (M-YOLO) that integrates coordinate attention and multi-scale is proposed and applied in safety helmet wearing detection. This model replaces YOLOv4's feature extraction network CSPDarknet53 with a lightweight feature extraction network S-MobileNetV2 composed of a mixed coordinate attention module. It effectively improves the connection between features while reducing the number of related parameters. The model changes the parallel connection method in the original spatial pyramid pooling structure to serial connection. It effectively improves computational efficiency. The feature fusion network is improved by introducing shallow features with high-resolution and multi detail texture information. It effectively enhances the extraction of object features. Some convolutions in the original Neck structure are modified to deep separable convolutions, further reducing the model's parameter and computational complexity while ensuring detection precision. The experimental results show that compared with the YOLOv4 model, the mean average precision of the M-YOLO model is only reduced by 0.84%. But the computational complexity, parameter quantity, and model size are reduced by 74.5%, 72.8%, and 81.6%, respectively. The detection speed is improved by 53.4%. Compared to other models, the M-YOLO model achieves a good balance between accuracy and real-time performance, meeting the requirements of embedded loading and deployment on intelligent video surveillance terminals.

  • 关键词

    目标检测安全帽佩戴检测坐标注意力模块轻量化多尺度特征融合

  • KeyWords

    object detection;safety helmet wearing detection;coordinate attention module;lightweight;multiscale feature fusion

  • 基金项目(Foundation)
    国家重点研发计划项目(2021YFC2902702)。
  • DOI
  • 引用格式
    李忠飞,冯仕咏,郭骏,等. 融合坐标注意力与多尺度特征的轻量级安全帽佩戴检测[J]. 工矿自动化,2023,49(11):151-159.
  • Citation
    LI Zhongfei, FENG Shiyong, GUO Jun, et al. Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature[J]. Journal of Mine Automation,2023,49(11):151-159.
  • 相关专题
  • 图表
    •  
    •  
    • M−YOLO结构

    图(9) / 表(0)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map