-
Title
Research on the deployment of monitoring sensors based on onlinemeasurement of mine wind resistance
-
作者
胡邦钊杨应迪
-
Author
HU Bangzhao;YANG Yingdi
-
单位
安徽理工大学安全科学与工程学院
-
Organization
School of Safety Science and Engineering ,Anhui University of Science and Technology
-
摘要
在建设矿山通风系统智能化的背景下,全矿风阻在线测定作为重要技术之一。建设智能通风系统的关键在于获得准确可靠的通风参数,但要实现全矿通风系统智能化需要安装大量感知传感器。为解决在传感器有限的基础上,实现阻力矿井风阻在线测定,采用改进的最小树原理,确定风速传感器的最优布设方案;从“测风求阻”原理出发,以节点压力满足回路风压平衡,确定压力传感器在风网中安设的最小数量,并对安装地点进行优化,从而获得全矿井的分支风量、节点压力风压监测数据。将上述原理应用于23条分支,16个节点的通风网络图,结果表明风阻误差在5%以内。
-
Abstract
Under the background of the construction of intelligent mine ventilation system,online determinationof wind resistance of the whole mine is one of the important technologies.The key to building an intelligentventilation system is to obtain accurate and reliable ventilation parameters,but to achieve intelligent ventilationsystems throughout the mine,a large number of perception sensors need to be installed.In order to solve theproblem of online determination of wind resistance in resistance mines on the basis of limited sensors,the improved minimum tree principle is used to determine the optimal layout scheme of wind speed sensors.Startingfrom the principle of " wind measurement and resistance" ,the nodal pressure is used to meet the wind pressurebalance of the circuit,the minimum number of pressure sensors installed in the wind network is determined,and the installation site is optimized,so as to obtain the branch air volume and node pressure wind pressuremonitoring data of the whole mine.The above principle is applied to the ventilation network diagram of 23branches and 16 nodes,and the results show that the wind resistance error is within 5%.83
-
关键词
智能通风传感器优化布置
-
KeyWords
mine ventilation;sensors;optimized layout
-
基金项目(Foundation)
煤炭安全精准开采国家地方联合工程研究中心开放基金资助(EC2021016)
-
DOI
-
引用格式
胡邦钊,杨应迪 .基于矿井风阻在线测定的监测传感器布设研究[J].华北科技学院学报,2023,20(6):38-43
-
Citation
HU Bangzhao, YANG Yingdi.Research on the deployment of monitoring sensors based on online measurementof mine wind resistance[J].Journal of North China Institute of Science and Technology,2023,20(6):38-43