Research progress on CO2 reforming of biomass pyrolysis tar
马晓茜廖艳芬陈新飞
MA Xiaoqian;LIAO Yanfen;CHEN Xinfei
华南理工大学电力学院
高温热解制气技术是生物质资源化利用领域重要研究方向,但热解焦油堵塞、腐蚀、利用难的问题限制了高温热解制气技术的应用。热解焦油CO2催化重整技术可实现焦油与CO2向H2和CO的协同转化,在降低热解气焦油与CO2含量的同时提高系统的能量回收效率。在热解焦油CO2催化重整过程中,贵金属催化剂在热解焦油催化重整中具有较高的催化反应活性,但其昂贵的成本限制了贵金属催化剂的大规模工业应用。在过渡金属催化剂中,镍基催化剂的催化活性高且成本较低,但镍金属颗粒在高温下烧结、团聚、积碳等问题会使反应活性降低,限制了镍基催化剂的长期运行。由于热力学限制,镍基催化剂的活性组分易在高温下团聚和烧结。针对镍基催化剂的烧结失活问题,通过掺杂改性少量贵金属提高催化剂的塔曼温度可以改善镍基催化剂的抗烧结性能。另一方面,在镍活性颗粒表面构筑核壳结构,提高镍金属颗粒在壳层中的分散性,可有效限制活性金属之间的迁移团聚与烧结失活。在焦油CO2催化重整过程中,高温会促进焦油裂解与CO歧化反应等副反应在催化剂表面形成碳沉积。围绕镍基催化剂的积碳失活问题,金属掺杂改性、核壳结构修饰与空气气氛引入可以限制丝状积碳沉积,减缓催化剂积碳失活的问题。
Pyrolysis technology for gas production in high temperature is an important research direction in the field of biomass resource utilization. However, the application of high temperature pyrolysis technology is limited due to the problems of clogging, corrosion, and difficult utilization of pyrolysis tar. The catalytic CO2 reforming of pyrolysis tar can achieve the synergistic conversion of tar and CO2 into H2and CO, reducing the content of pyrolysis tar and CO2 and improving the energy recovery efficiency of the system. During catalytic CO2 reforming of pyrolysis tar process, noble metal catalysts have high catalytic activity, but the large-scale industrial application of noble metalcatalysts is limited due to the high cost. Among transition metal catalysts, nickel-based catalysts have high catalytic activity and low cost,but the reaction activity will decrease due to the problems such as sintering, agglomeration, and coke deposition of metal nickel particlesat high temperatures, limiting the long-term operation of nickel-based catalysts. Due to the thermodynamic limitation, the active components of nickel-based catalysts are prone to agglomeration and sintering at high temperatures. Focusing on the sintering deactivation ofnickel-based catalysts, the Taman temperature of nickel particle can be increased and the anti-sintering performance of nickel-based catalysts can be improved by doping a small amount of noble metals. On the other hand, constructing a core-shell structure on the surface ofnickel particles can effectively limit the phase migration, agglomeration, and sintering deactivation of active metals by improving the dispersion of nickel metal particles in the shell layer. High temperatures in the catalytic CO2 reforming of tar process can promote reactions,such as tar cracking and CO disproportionation to form coke deposition on catalyst surface. Considering the deactivation of coke depositionon nickel-based catalysts, metal doping modification, core shell structure modification, and air introduction can limit the deposition of filamentous and slow down the deactivation caused by coke deposition.
生物质热解焦油CO2催化重整催化剂失活
biomass;pyrolysis tar;CO2 reforming;catalysts;deactivation
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会