AI model for intelligent recognition of coal mine scene features through multi-source data fusion
王立兵任予鑫马昆王蕾刘峰翟文董霁红
WANG Libing;REN Yuxin;MA Kun;WANG Lei;LIU Feng;ZHAI Wen;DONG Jihong
中国矿业大学 环境与测绘学院矿山生态修复教育部工程研究中心中国矿业大学 公共管理学院中国矿业大学 机电工程学院国家能源集团 宁夏煤业有限责任公司中国煤炭学会国家能源集团 战略规划部
矿山场景数据是智慧矿山建设和智能管理的基础数据,如何利用包括遥感影像在内的多源数据快速识别和提取出复杂的矿山场景是重要的研究方向。采用2020年Sentinel-2 影像、GF-6 影像、GF-2 影像进行最优数据集筛选,使用2023年谷歌影像(Google image)数据扩充数据集,并与深度学习算法相结合,建立了2种露天煤矿场地识别模型。研究主要结论:① 利用10 m Sentinel-2影像、8 m GF-6原始影像、2 m GF-6融合影像、3.2 m GF-2原始影像、0.8 m GF-2融合影像建立矿山识别模型,量化选择不同数据产生的模型精度。结果显示,遥感图像空间分辨率从10 m增加到0.8 m,通过相同的方法建立的矿山场景识别模型的精度逐渐提高。其中使用0.8 m空间分辨率的GF-2融合影像建立的矿山场景识别模型的精度最高,平均精准度
Mine site data is a crucial foundation for the construction of smart mines and intelligent management. The rapid identification and extraction of complex mine sites from multi-source data, including remote sensing images, is an important research direction. This paper uses Sentinel-2 images from 2020, GF-6 images, and GF-2 images to select the optimal dataset. Google image data from 2023 is used to expand the dataset, which is combined with deep learning algorithms to establish two types of open-pit coal mine site recognition models. The main conclusions of the study are: ① A mine recognition model was established using 10 m Sentinel-2 images, 8 m GF-6 raw images, 2 m GF-6 fusion images, 3.2 m GF-2 raw images, and 0.8 m GF-2 fusion images. The accuracy of the model produced by different data was quantitatively selected. The results show that as the spatial resolution of remote sensing images increases from 10 meters to 0.8 meters, the accuracy of the mine site recognition model established by the same method gradually improves. Among them, the mine site recognition model established using GF-2 fusion images with a spatial resolution of 0.8m has the highest accuracy, with an average precision (
矿山场景多源数据深度学习算法智能识别AI模型
mine scene;multi-source data;deep learning algorithm;intelligent recognition;AI model
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会