摘要
煤含水率监测对降低储运煤的碳排放指标意义重大,针对港口煤场堆垛含水率监测需求,提出了一种基于CNN-Bi-LSTM网络的煤炭含水率预测方法,该方法基于卷积神经网络和双向长短期记忆网络,利用其特征提取及时间序列特征记忆能力,通过采集黄骅港煤炭转运堆场的海量煤含水率数据和场区气象数据,对多源数据训练学习和融合分析,实现对港口煤炭含水率预测,并进行了有效性实验验证.实验结果表明,与传统算法模型相比,所提出的CNN-Bi-LSTM混合神经网络模型在预测精度、收敛率和鲁棒性方面表现最优,使用该预测方法建立的洒水管控模型可有效降低煤炭堆场用水量,减少煤炭堆场的起尘概率,环境状况也得到有效改善.