• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于多行为特征嵌入记忆网络的知识追踪模型
  • Title

    Knowledge Tracing Model Based on Multiple Behavior Features Embedded Memory Networks

  • 作者

    贺步贵董永权贾瑞金家永

  • Author

    HE Bugui;DONG Yongquan;JIA Rui;JIN Jiayong

  • 单位

    江苏师范大学 计算机科学与技术学院江苏师范大学 江苏省教育信息化工程技术研究中心江苏师范大学 徐州市云计算工程技术研究中心

  • Organization
    College of Computer Science and Technology, Jiangsu Normal University
    Jiangsu Engineering Technology Research Center of ICT in Education, Jiangsu Normal University
    Xuzhou Cloud Computing Engineering Technology Research Center, Jiangsu Normal University
  • 摘要

    【目的】为了充分利用交互记录中的学习和遗忘特征,提出了一种基于多行为特征嵌入记忆网络的知识追踪模型(MFKT).该模型考虑了学习过程中的学习和遗忘两种行为。【方法】首先,从交互记录中提取学习和遗忘两大特征,然后将提取到的学习特征通过标量交叉方式嵌入记忆网络,同时将遗忘特征通过向量组合的方式嵌入,用于增强其对于学生答题序列的学习能力。此外,还考虑到了不同学生回答完成后的知识增长差异,在原先记忆网络的基础上增加了一个知识增长层,用于计算学生答题得到的知识增长。【结果】通过在公开数据集上的实验表明,MFKT更加符合学生的真实学习规律,能够实现对学生知识状态更加精准的追踪。

  • Abstract

    【Purposes】 A Knowledge Tracing Model based on Multiple Behavior Features Em-bedded Memory Networks (MFKT) was proposed to fully utilize the learning and forgetting fea-tures in interaction records. The MFKT model considers both learning and forgetting behaviors in the learning process. 【Methods】 First, two major features, learning and forgetting, are extrac-ted from the interaction records, and then the extracted learning features are embedded into the memory network by scalar crossover, while the forgetting features are embedded by vector com-bination, which is used to enhance the learning ability of MFKT model for the students’ interac-tion sequences. In addition, after different students’ answers are completed, the difference in knowledge level growth is considered and a knowledge growth layer to the original memory net-work is added for calculating the knowledge growth obtained from students’ responses. 【Conclusion】 Experiment results on public datasets show that MFKT is more in line with real learning patterns of students and can realize more accurate tracing of students’ knowledge status.

  • 关键词

    智慧教育知识追踪特征提取动态键值记忆网络学习与遗忘

  • KeyWords

    intelligent education; knowledge tracing; feature extraction; dynamic key-value

  • 基金项目(Foundation)
    国家自然科学基金资助项目(61872168);江苏省教育科学“十四五”规划课题(D/2021/01/112)
  • DOI
  • 引用格式
    贺步贵,董永权,贾瑞,等.基于多行为特征嵌入记忆网络的知识追踪模型[J].太原理工大学学报,2024,55(1):184-194.
  • Citation
    HE Bugui,DONG Yongquan,JIA Rui,et al.Knowledge tracing model based on multiple behavior features em-bedded memory networks[J].Journal of Taiyuan University of Technology,2024,55(1):184-194.
  • 相关专题
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map