• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于机器学习的煤矿瓦斯浓度预测技术
  • Title

    Coal mine gas concentration prediction technologybased on machine learning

  • 作者

    徐平安张若楠周小雨赵琦琦

  • Author

    XU Ping’ an;ZHANG Ruonan;ZHOU Xiaoyu;ZHAO Qiqi

  • 单位

    平安煤炭开采工程技术研究院有限责任公司

  • Organization
    Ping’ an Coal Mining Engineering Technology Research Institute Co., Ltd.
  • 摘要
    煤矿发生瓦斯灾害前,往往伴随瓦斯浓度异常,准确判断瓦斯浓度是进行瓦斯突出预测、通风设计等工作的基础。通过机器学习的方法,将影响瓦斯浓度的多种因素进行综合计算,探索一种基于机器学习的多因素煤矿瓦斯浓度预测技术,通过构建模型、训练模型、实际使用,计算得出预测值与实际值的误差,并结合实际生产矿井数据,进行验证计算,验证此种方法的可行性,将瓦斯预测技术由被动式变为主动式,为煤矿瓦斯浓度预测提供新思路,同时将大数据、深度学习等智能化技术引入至煤矿瓦斯治理中,具有广阔的应用前景。
  • Abstract
    Before a gas disaster occurs in a coal mine, it is often accompanied by abnormal gas concentration. Accurately determining gas concentration is the basis for gas outburst prediction, ventilation design, and other related work. We use machine learning method to comprehensively calculate various factors that affect gas concentration, and explore a multi-factorcoal mine gas concentration prediction technology based on machine learning. By constructing a model, training the model,and using it in practice, the error between the predicted and the actual value is calculated, and the feasibility of this methodverified through actual production mine data. The gas prediction technology is transformed from passive to active, providing anew approach for predicting coal mine gas concentration. Introducing intelligent technologies such as big data and deeplearning into coal mine gas management is of widely practical prospect.
  • 关键词

    机器学习煤矿瓦斯线性回归算法浓度预测

  • KeyWords

    machine learning;coal mine gas;linear regression algorithm;concentration prediction

  • DOI
  • 相关文章
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map