-
Title
Analysis and forecast of industrial carbon emissions in Shaanxi Provincebased on STIRPAT Model
-
作者
吴长江
-
Author
Wu Changjiang
-
单位
西安科技大学管理学院陕西省能源产业绿色低碳发展软科学重点研究基地
-
Organization
School of Management, Xi’an University of Science and Technology
Shaanxi Key Research Base of Soft Science for Green and Low-carbon Development of Energy Industry
-
摘要
工业行业是陕西省碳排放的最主要来源,研究工业行业碳排放的影响因素,预测其碳达峰时间,对陕西省尽快实现“双碳”目标具有重要的现实意义。构建STIRPAT模型,运用岭回归并结合情景分析,预测陕西省工业行业碳达峰时间与峰值。研究结果表明:①陕西省工业行业碳达峰时间出现在2030—2040年之间,峰值规模约在19412.54万~23472.48万t之间;②人口规模是促进陕西省工业行业碳排放的最主要因素,而能源强度对工业碳排放具有显著的抑制作用,通过对人口规模和能源强度的调节,可以为陕西省减少4059.94万t碳排放量;③人口规模、地区生产总值、工业产出对二氧化碳排放产生显著的正向影响,而能源强度对二氧化碳排放产生显著的负向影响。最后根据碳排放预测结果,提出陕西省工业行业碳减排路径,同时也为其他工业大省和工业城市的碳减排提供一定的参考。
-
Abstract
Industrial industry is the most important source of carbon emissions in Shaanxi Province. This paper constructs STIRPATmodel, uses ridge regression and scenario analysis to predict the peak time and peak value of industrial carbon in Shaanxi Province. Theresults show that: (1) the peak time of industrial carbon in Shaanxi Province occurs between 2030 and 2040, and the peak scale is about19 412. 54~23 472. 48 tons; (2) population size is the most important factor to promote industrial carbon emissions in Shaanxi Province,while energy intensity has a significant inhibitory effect on industrial carbon emissions; (3) population size, regional GDP and industrialoutput have a significantly positive impact on carbon dioxide emissions, while energy intensity has a significantly negative impact on carbondioxide emissions. Finally, according to the forecast results of carbon emission, the paper puts forward the path of carbon emissionreduction of industrial industries in Shaanxi Province, which also provides some reference for the carbon emission reduction of otherindustrial provinces and industrial cities.
-
关键词
工业行业碳排放STIRPAT碳达峰碳减排路径
-
KeyWords
industrial sector; carbon emissions; STIRPAT; carbon peak; carbon emission reduction path
-
基金项目(Foundation)
国家自然科学基金资助项目(71273206);陕西省哲学社会科学重大理论与现实问题重点智库项目(2021ZD0998);陕西省教育厅科研计划项目(19JK0944)