• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
蒙陕接壤区煤层顶板涌水水源智能判别方法
  • Title

    An intelligent water source discrimination method for water inrushes from coal seam roofs in the Inner Mongolia-Shaanxi border region

  • 作者

    王皓孙钧青曾一凡尚宏波王甜甜乔伟

  • Author

    WANG Hao;SUN Junqing;ZENG Yifan;SHANG Hongbo;WANG Tiantian;QIAO Wei

  • 单位

    煤炭科学研究总院中煤科工西安研究院(集团)有限公司陕西省煤矿水害防治技术重点实验室中国矿业大学(北京) 国家煤矿水害防治工程技术研究中心

  • Organization
    China Coal Research Institute
    CCTEG Xi’an Research Institute (Group) Co., Ltd.
    Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard
    National Coal Mine Water Hazard Prevention Engineering Technology Research Center, China University of Mining and Technology (Beijing)
  • 摘要
    蒙陕接壤区煤炭高强度开采诱发的煤层顶板水害问题日益凸显,高效智能地判别煤层顶板涌水水源是顶板水害防治的关键。以蒙陕接壤区3个典型矿井为研究对象,将无机指标K++Na+、Ca2+、Mg2+、Cl−、SO4 2−、HCO3 −、TDS和有机指标UV254、TOC、溶解性有机质(DOM)的荧光光谱作为判别指标,利用主成分分析法(PCA)对80组地下水水样数据进行主成分提取,提出一种人工鱼群算法(AFSA)改进随机森林(RF)的PCA-AFSA-RF顶板涌水水源智能判别方法。首先,建立PCA-RF判别模型,其准确率(Ac)、精确率(Pr)、召回率(Rc)和F-measure指数(f1)分别达到了83.00%、83.17%、80.42%和79.57%;其次,通过AFSA对PCA-RF判别模型中决策树数目、树深和内部节点分裂所需的最小样本数进行寻优,在AFSA中引入遗传机制以避免陷入局部最优,建立基于PCA-AFSA-RF的煤层顶板涌水水源智能判别模型,该模型Ac、Pr、Rc、f1分别达到92.18%、91.11%、87.58%和88.82%,较PCA-RF分别提高9.18%、7.94%、7.16%和9.25%,回代准确率达到97.50%;最后,利用该模型对12个矿井水水样进行判别,结果与现场实际相一致,表明AFSA改进后的PCA-RF模型具有更好的准确性和泛化能力。研究结果可为煤层顶板涌水水源的准确判别提供新方法。
  • Abstract
    Water hazard on the coal seam proof induced by high-intensity coal mining are increasingly prominent in the Inner Mongolia-Shaanxi border region. The effective, accurate water-source discrimination of the water inrushes is the key to water hazard prevention. This study investigated three typical mines in the Inner Mongolia-Shaanxi border region. To this end, principal component analysis (PCA) was employed to extract principal components from 80 groups of groundwater samples. Then, with inorganic indicators K++Na+, Ca2+, Mg2+, Cl−, SO4 2−, HCO3 − and TDS and organic indicators UV254, TOC, and dissolved organic matter (DOM)’s fluorescence spectra as discriminant indicators, this study proposed a intelligent identificaton method of PCA-AFSA-RF roof water inrush source by using artificial fish swarm algorithm (AFSA) to improve random forest (RF). First, a PCA-RF discriminant model was established, with accuracy (Ac), precision (Pr), recall (Rc), and F-measure (f1) of 83.00%, 83.17%, 80.42%, and 79.57%, respectively. Then, in the PCA-RF discriminant model, AFSA was employed to optimize the number of decision trees, the depth of trees, and the minimum sample number needed for internal node splitting. Furthermore, a genetic mechanism was introduced into AFSA to avoid local optimization. In this way, a PCA-AFSA-RF water-source discriminant model for water inrushes on coal seam roofs was established, with Ac, Pr, Rc, and f1 of up to 92.18%, 91.11%, 87.58%, and 88.82%, respectively, increasing by 9.18%, 7.94%, 7.16%, and 9.25% compared to the PCA-RF model. Furthermore, the PCA-AFSA-RF exhibited a back substitution accuracy reaching 97.50%. Finally, this model was used for the water-source discrimination of 12 water samples from the mines, yielding results consistent with the actual results in the field. This indicates that the PCA-RF model with improved AFSA enjoys better accuracy and generalization ability. The research results of this study can provide a new method for the accurate water-source identification of water inrushes from coal seam roofs.
  • 关键词

    蒙陕接壤区顶板涌水无机−有机指标机器学习智能判别

  • KeyWords

    Inner Mongolia-Shaanxi border region;water inrushing from roof bed;inorganic-organic indicator;machine learning;intelligent discrimination

  • 基金项目(Foundation)
    国家自然科学基金项目(52204262);陕西省自然科学基础研究计划项目(2022JQ-471);中国煤炭科工集团有限公司科技创新创业资金专项重点项目(2023-TD-ZD001-001)
  • DOI
  • 引用格式
    王皓,孙钧青,曾一凡,等. 蒙陕接壤区煤层顶板涌水水源智能判别方法[J]. 煤田地质与勘探,2024,52(4):76−88.
  • Citation
    WANG Hao,SUN Junqing,ZENG Yifan,et al. An intelligent water source discrimination method for water inrushes from coal seam roofs in the Inner Mongolia-Shaanxi border region[J]. Coal Geology & Exploration,2024,52(4):76−88.
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 研究区位置及地层

    图(10) / 表(4)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map