• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于机器学习的多气体指标煤自燃温度预测
  • Title

    Prediction of coal spontaneous combustion temperature with multi-gas index based on machine learning

  • 作者

    曹富荣吴学松李军付天予刘佳伟李志辉杨小彬

  • Author

    CAO Furong;WU Xuesong;LI Jun;FU Tianyu;LIU Jiawei;LI Zhihui;YANG Xiaobin

  • 单位

    华亭煤业公司中国矿业大学(北京) 应急管理与安全工程学院

  • Organization
    Huating Coal Industry Company
    School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing)
  • 摘要

    采空区煤自燃是诱发矿井火灾的主要因素之一,在矿井火灾中的占比高达90%。为实现采空区自燃的精准防治,需要准确获得采空区内部的高温点温度,以砚北煤矿为工程背景,分析其煤样氧化升温过程中产生的指标气体,建立煤自燃温度预测的指标体系,进而开展基于深度学习的多指标气体煤自燃温度预测研究。首先对砚北煤矿采集的煤样进行煤氧化升温实验,根据实验结果划分为单一气体指标与复合气体指标,分析各指标随温度上升的变化规律,进而确定合适的指标作为煤自燃温度预测指标;使用多源数据处理方法对煤自燃温度预测指标进行处理,应用库克距离法和多重插补法对数据进行清洗,并结合灰色关联度分析法建立煤自燃温度预测指标体系;使用Elman神经网络构建预测模型,确定模型结构与超参数后,进而建立煤自燃温度预测模型,获得煤氧化升温过程中温度的准确预测。

  • Abstract

    Spontaneous combustion of coal in goaf is one of the main factors inducing mine fire, which accounts for 90% of mine fire. In order to achieve accurate prevention and control of spontaneous combustion in goaf, it is necessary to accurately obtain the high temperature point temperature in goaf. Based on Yanbei Coal Mine as the engineering background, this paper analyzes the index gases produced during the oxidation and heating process of coal samples, establishes the index system of coal spontaneous combustion temperature prediction, and then carries out the research of multi-index gas coal spontaneous combustion temperature prediction based on deep learning. Firstly, the coal samples collected from Yanbei Coal Mine were tested for coal oxidation and temperature rise. According to the experimental results, they were divided into single gas index and compound gas index. The change law of each index with temperature rise was analyzed, and the appropriate index was determined as the prediction index of coal spontaneous combustion temperature. The prediction index of coal spontaneous combustion temperature is processed by multi-source data processing method, the data is cleaned by Cook distance method and multiple interpolation method, and the prediction index system of coal spontaneous combustion temperature is established by grey correlation analysis method. Elman neural network was used to build a prediction model, and after determining the model structure and hyper-parameters, a prediction model of coal spontaneous combustion temperature was established to obtain an accurate prediction of the temperature in the process of coal oxidation and heating.

  • 关键词

    多气体指标Elman神经网络多源数据处理预测模型煤自燃温度预测

  • KeyWords

    multi-gas index;Elman neural network;multi-source data processing;prediction model;prediction of coal spontaneous combustion temperature

  • DOI
  • 引用格式
    曹富荣,吴学松,李军,等. 基于机器学习的多气体指标煤自燃温度预测[J]. 煤矿安全,2024,55(4):106−113.
  • Citation
    CAO Furong, WU Xuesong, LI Jun, et al. Prediction of coal spontaneous combustion temperature with multi-gas index based on machine learning[J]. Safety in Coal Mines, 2024, 55(4): 106−113.
  • 图表
    •  
    •  
    • 空气式煤程序升温氧化实验系统原理图

    图(5) / 表(2)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map