• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于Python多项式回归的钻孔瓦斯压力预测与应用
  • Title

    Prediction and application of borehole gas pressure based on Python polynomial regression

  • 作者

    谢凯熙王声远齐黎明

  • Author

    Xie Kaixi;Wang Shengyuan;Qi Liming

  • 单位

    华北科技学院安全工程学院

  • Organization
    School of Safety Engineering, North China Institute of Science and Technology
  • 摘要
    针对瓦斯测压过程中读取数据误差大、操作不方便和周期性长等问题,研发了一套远程、实时在线监测装置,并利用Python多项式回归对数据进行分析预测。研究结果显示,利用传感器、网络交换机和数据监测系统实现了钻孔瓦斯压力远程、精准、实时在线监测,同时相比传统的一元线性回归方法,Python多项式回归方法对数据的拟合度更高预测更准确,有效缩短了测压时间。
  • Abstract
    Aiming at the problems of large reading data error, inconvenient operation and long periodicity in the process of gas pressure measurement, a set of remote and real-time online monitoring device is developed, and Python polynomial regression is used to analyze and predict the data. The research results show that the remote, accurate and real-time online monitoring of borehole gas pressure is realized by using sensors, network switches and data monitoring system. At the same time, compared with the traditional linear regression method, Python polynomial regression method has higher fitting degree and more accurate prediction of data, which effectively shortens the pressure measurement time.
  • 关键词

    瓦斯测压在线监测装置Python多项式回归预测缩短测压时间

  • KeyWords

    gas pressure measurement;on-line monitoring device;python polynomial regression;prediction;shorten the pressure measurement time

  • DOI
  • 引用格式
    谢凯熙,王声远,齐黎明. 基于Python多项式回归的钻孔瓦斯压力预测与应用[J]. 煤炭与化工, 2024, 47(3): 103- 106,111..
  • Citation
    Xie Kaixi, Wang Shengyuan, Qi Liming. Prediction and application of borehole gas pressure based on Python polynomial regression. CCI, 2024, 47(3): 103- 106,111..
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map