• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
机器学习模型预测煤热解产物分布研究
  • Title

    Prediction of coal pyrolysis product distributionusing machine learning model

  • 作者

    王敏欣师印光刘长波吴雷周军蒋绪

  • Author

    WANG Minxin;SHI Yinguang;LIU Changbo;WU Lei;ZHOU Jun;JIANG Xu

  • 单位

    中冶节能环保有限责任公司西安建筑科技大学化学与化工学院咸阳职业技术学院能源化工研究所

  • Organization
    Energy Saving and Environmental Protection Company Limitied, MCC Group
    School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology
    Research Institute of Energy and Chemical Industry, Xianyang Vocational Technical College
  • 摘要
    热解技术是煤清洁高效转化利用的主要技术之一,然而由于煤成分复杂、热解反应难以控制,对于各煤种都需要消耗大量时间和精力重复进行热解产物分布研究。以煤的组成和热解终温为输入条件,煤热解产物收率为输出条件,采用机器学习模型调参后的随机森林(RF)、支持向量机(SVM)和极限梯度提升(XGBoost)算法对煤热解产物收率进行了预测,分析了不同输入特征对热解产物收率的重要性,并使用双因素部分依赖分析(PDP)评估了输入特征对热解产物收率的影响。结果表明:三种算法模型中,XGBoost算法对煤热解产物收率预测的性能最佳,其对焦油收率的决策系数(R2)和均方根误差(RMSE)分别达到最高的0.95和最低的0.86;焦炭收率主要受到固定碳、挥发分、氧元素和热解终温的影响,占比为84%,而焦油收率主要受挥发分、氢元素、氮元素和热解终温的影响,占比为83%;PDP分析表明,随着煤中氢原子和挥发分质量分数的增加,煤热解焦油收率会随之上升;根据XGBoost算法计算可知,当煤中氢元素的质量分数在5.0%~6.0%,挥发分的质量分数位于30%~40%时,热解焦油收率可达到9%以上,当固定碳的质量分数大于50%时,煤中氢元素和挥发分的质量分数减少以及热解终温下降,都会引起热解气收率的降低。
  • Abstract
    Pyrolysis technology is one of the primary methods for clean and efficient con- version and utilization of coal. However, due to the complex composition of coal and the challen-ges in controlling pyrolysis reactions,extensive time and effort are required to repeatedly investi-gate the pyrolysis product distribution for different types of coal. Taking coal composition and fi-nal pyrolysis temperature as input conditions and yield of coal pyrolysis products as output condi-tion, three machine learning models with adjusted parameters, that is, random forest (RF), support vector machine (SVM) and XGBoost model, were utilized to predict the yield of coal py-rolysis products. The importance of various input features on the yield of pyrolysis products was analyzed, and the effects of these input features were also quantified via two-factor partial de-pendence (PDP). The results show that the XGBoost model have the best performance among these three models for predicting the yield of coal pyrolysis products, and its decision coefficient and root mean square error for tar yield reach the highest 0.95 and the lowest 0.86, respectively. The important input features for coke yield are fixed carbon, volatiles, oxygen and pyrolysis final temperature, and their importance accounts for 84%. The tar yield are mainly affected by vola-tiles, hydrogen, nitrogen and pyrolysis final temperature, accounting for 83% of total impor-tance. The PDP analysis indicates that an increase in mass fraction of hydrogen and volatile in coal, the yield of coal pyrolysis tar will increase. According to the XGBoost model, the yield of pyrolysis tar exceeds 9% when the mass fraction of hydrogen is between 5.0% and 6.0 % in coal, coupled with mass fraction of volatile between 30% and 40%. When mass fraction of the fixed carbon is greater than 50%, a decrease in mass fraction of hydrogen and volatile in coal, as well as a decrease in the final pyrolysis temperature, would result in a decline in the yield of py-rolysis gas.
  • 关键词

    煤热解产物收率机器学习重要特征性分析部分依赖性分析

  • KeyWords

    coal pyrolysis;product yield;machine learning;important feature analysis;partial dependence analysis

  • 基金项目(Foundation)
    陕西省自然科学基础研究计划一般项目(2024JC-YBQN-0090)和陕西省教育厅服务地方专项计划项目(22JC045).
  • DOI
  • 引用格式
    王敏欣,师印光,刘长波,等.机器 学 习 模 型 预 测 煤 热 解 产 物 分 布 研 究[J].煤 炭 转 化,2024,47(4):11-22
  • Citation
    WANG Minxin,SHI Yinguang,LIU Changbo,et al.Prediction of coal pyrolysis product distribution using machine learning model[J].Coal Conversion,2024,47(4):11-22
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map