• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于PSO-Attention-LSTM算法的煤电脱硫脱硝运行状态预测方法
  • Title

    Method forpredicting the operation status of coal electricity desulfurization and denitration based on PSO-Attention-LSTM algorithm

  • 作者

    侯深祝业青李祥潘云

  • Author

    HOU Shen;ZHU Yeqing;LI Xiang;PAN Yun

  • 单位

    国电环境保护研究院有限公司

  • Organization
    Guodian Environmental Protection Research Institute Co., Ltd
  • 摘要
    煤电脱硫脱硝的正常运行对电力系统的安全稳定有着重要影响,但是传统预测方法存在准确率不高的问题,因此提出一种改进PSO-Attention-LSTM的煤电脱硫脱硝运行状态预测方法。首先,建立优化煤电脱硫脱硝运行状态的主要指标及其权重指标,在数据输入阶段,通过PSO-Attention-LSTM获取运行状态数据相关的时空特征,对煤电脱硫脱硝运行状态作出预测,完成煤电脱硫脱硝潜在性故障的预警信息。试验结果显示,该预测方法对煤电脱硫脱硝运行状态的预测精度在84%,能够较好准确预测煤电脱硫脱硝的运行状态,可用于煤电脱硫脱硝运维管理的参考辅助。
  • Abstract
    The normal operation of coal-fired desulfurization and denitrification has a significant impact on the safety and stability of the power system. However, traditional prediction methods have the problem of low accuracy. An improved PSO-Attention LSTM method for predicting the operational status of coal-fired desulfurization and denitrification is proposed. Firstly, establish the main indicators and their weight indicators for optimizing the operation status of coal-fired power desulfurization and denitrification. In the data input stage, obtain the spatiotemporal characteristics related to the operation status data through PSO-Attention LSTM, predict the operation status of coal-fired power desulfurization and denitrification, and complete the warning information of potential faults in coal-fired power desulfurization and denitrification. The experimental results show that the prediction accuracy of this prediction method for the operational status of coal-fired power desulfurization and denitrification is 84%, which can effectively and accurately predict the operational status of coal-fired power desulfurization and denitrification. It can be used as a reference assistance for the operation and maintenance management of coal-fired power desulfurization and denitrification.
  • 关键词

    煤电脱硫脱硝状态预测粒子群优化注意力机制长短期记忆网络

  • KeyWords

    coal electric desulfurization and denitrification;state prediction;PSO;attention mechanism;LSTM

  • 引用格式
    侯深, 祝业青, 李祥, 潘云. 基于PSO-Attention-LSTM算法的煤电脱硫脱硝运行状态预测方法. 煤炭经济研究. 2024, 44(8): 60-64
  • Citation
    HOU Shen, ZHU Yeqing, LI Xiang, PAN Yun. Method forpredicting the operation status of coal electricity desulfurization and denitration based on PSO-Attention-LSTM algorithm. Coal Economic Research. 2024, 44(8): 60-64
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map