• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
采煤机自适应截割技术研究进展及发展趋势
  • Title

    Research progress and development trends in adaptive cutting technology for shearers

  • 作者

    王忠宾李福涛司垒魏东戴嘉良张森

  • Author

    WANG Zhongbin;LI Futao;SI Lei;WEI Dong;DAI Jialiang;ZHANG Sen

  • 单位

    中国矿业大学机电工程学院

  • Organization
    School of Mechanical and Electrical Engineering, China University of Mining and Technology
  • 摘要

    自适应截割技术是实现采煤机智能化的核心技术,对提升煤矿开采效率、提高安全性和资源利用率具有重要作用。因此,开展了自适应截割技术的综述研究,重点探讨了其技术原理及应用现状。根据核心功能和技术目标,将采煤机自适应截割技术划分为记忆截割、透明地质、煤岩识别和自适应控制4个研究内容。记忆截割通过记录历史数据来优化采煤路径,透明地质利用综合探测技术获取实时地质信息,煤岩识别技术根据不同的识别原理,可以分为基于物理参数的间接法、基于视觉的直接法、以及探地雷达和超声波等基于波动特性的探测法,以实现煤岩界面或煤岩性质的精确识别,自适应控制则通过自动化调节采煤机的运行参数。这些技术从多个角度提升了采煤机的智能化水平。然而,由于煤层地质条件及恶劣开采环境的影响,现有技术在适应性和经济性方面存在一些局限性。因此,针对未来采煤机自适应截割技术的发展趋势,提出了以下建议:促进记忆截割、透明地质与煤岩识别技术的融合,以实现更高效的煤层信息获取;采用多传感器融合技术,以提高煤岩识别的准确度和可靠性;发展基于大数据分析的智能决策支持系统,优化采煤机的运行策略,同时研究多领域协同仿真控制策略,以应对技术瓶颈并增强系统性能。

  • Abstract

    Adaptive cutting technology is crucial for enabling intelligent shearers, significantly improving mining efficiency, safety, and resource utilization. Therefore, a comprehensive review of adaptive cutting technology has been conducted, focusing on its technical principles and current applications. Based on core functions and technical objectives, adaptive cutting technology is categorized into four primary research areas: memory cutting, transparent geology, coal-rock identification, and adaptive control. Memory cutting enhance cutting paths by recording historical data, while transparent geology leverages integrated detection technologies to acquire real-time geological information. Coal-rock identification techniques are classified according to recognition principles: indirect methods based on physical parameters, direct methods relying on visual information, and wave-based detection methods such as ground-penetrating radar and ultrasound. Adaptive control automates the adjustment of shearer operating parameters. Collectively, these technologies advance the intelligence of coal mining machines from various perspectives. Nevertheless, due to geological complexities and challenging mining environments, existing technologies face limitations in adaptability and cost-effectiveness. Therefore, future development of adaptive cutting technology should focus on integrating memory cutting, transparent geology, and coal-rock identification technologies to enhance coal seam data acquisition. Implementing multi-sensor fusion technology to improve the accuracy and reliability of coal-rock identification. Developing intelligent decision-support systems based on big data analytics to optimize mining operations and researching multi-domain collaborative simulation control strategies to address technical challenges and improve system performance.

  • 关键词

    自适应截割煤岩识别记忆截割透明地质

  • KeyWords

    adaptive cutting technology;coal and rock identification;memory cutting;transparent geology technology

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52174152);智能采矿装备技术全国重点实验室自主研究课题资助项目(ZNCK20240106); 徐州市基础研究计划资助项目(KC23051)
  • DOI
  • 引用格式
    王忠宾,李福涛,司 垒,等. 采煤机自适应截割技术研究进展及发展趋势[J]. 煤炭科学技术,2025,53(1):296−311.
  • Citation
    WANG Zhongbin,LI Futao,SI Lei,et al. Research progress and development trends in adaptive cutting technology for shearers[J]. Coal Science and Technology,2025,53(1):296−311.
  • 相关文章
  • 图表
    •  
    •  
    • 采煤机记忆截割轨迹

    图(14) / 表(3)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map