• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
刮板输送机飘链故障诊断技术研究
  • Title

    Study on diagnosis technology of flying chain fault in scraper conveyor

  • 作者

    董刚马宏伟南源桐马琨

  • Author

    Dong Gang Ma Hongwei Nan Yuantong Ma Kun

  • 单位

    西安科技大学机械工程学院平顶山天安煤业股份有限公司六矿

  • Organization
    School of Mechanical Engineering, Xi'an University of Science and Technology No 6 Mine, Pingdingshan Tianan Coal Company
    Limited
  • 摘要
    针对刮板输送机在其弯曲区段容易发生的飘链问题,提出了一种基于卷积神经网络和支持向量机的声音信号识别模型,该模型以经过PCA白化处理的综采工作面设备声音运行声音的声谱图为输入,由深度CNN网络提取声音信号的特征,并以SVM分类器实现对声音信号的识别,最终实现对刮板输送机飘链故障的诊断。同时推导了以SVM为输出层的深度CNN网络模型在训练时误差反向传播时输出层对全连接层的敏感度函数,并通过试验发现了对输入的声音信号进行不同时长的切分作为模型输入时,对CNN-SVM模型识别率产生影响的规律,最后通过对比试验验证了此模型确实比传统的GMM-HMM模型具有更高的识别准确率。
  • Abstract
    According to the chain flying problems easily occurred at the bending section of the scraper conveyor, based on a convolution neural network and support vector machine, a s ound and signal identification model was provided. With the PCA whitening processing of the equipment sound from fully mechanized coal mining face, the sonogram of the operation sound would be an input. The depth CNN network would be applied to pick up the sound and signal features, the SVM classifier would be applied to realize the identification of the sound and signal and finally the diagnosis on the flying chain fault of the scraper conveyor could be realized. Meanwhile, based on the SVM as the depth of an output layer, the output layer of the CNN network model at an error reverse transmission during the training could be applied to derive a sensitivity function of the full connected layer. The test showed that when the input sound and signal had a different time cutting as the input of the model and would be affected to the identification of the CNN- SVM model. Finally, the comparison test verified that the model could have a higher identification than the conventional GMM-HMM model.
  • 关键词

    刮板输送机卷积神经网络支持向量机故障诊断

  • KeyWords

    scraper conveyor; convolution neural network; support vector machine; fault diagnosis;

  • 基金项目(Foundation)
    国家自然科学基金资助项目(U1361121);
  • 相关专题
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map