• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于神经网络和灰色理论组合的变压器故障预测
  • 作者

    许允之谭清雄方磊曹海洋方永丽

  • 单位

    中国矿业大学动力与电气工程学院华中科技大学水电学院

  • 摘要
    基于变压器油中溶解气体分析(DGA)法是使用神经网络和灰色预测对变压器的故障进行预测的。主要是采集变压器油在各种情况下的数据,并对应其故障进行编码,再用Matlab编写神经网络进行训练,输入各特征气体百分含量,输出对应的故障编码。通过对比,发现神经网络预测精度高达80%,使用灰色理论对各特征气体含量进行预测,与实际值对比,预测精度很高。最后将各个特征气体含量转化为百分数,输入已训练好的神经网络系统,预测出变压器的状态。最终所预测出的故障和实际故障一致。
  • 关键词

    灰色理论神经网络溶解气体分析(DGA)故障预测

  • 相关文章
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map