• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
矿井提升机自适应神经模糊故障诊断策略研究
  • Title

    Study on Adaptive Neuro- fuzzy Fault Diagnosis Strategy of Mine Hoist

  • 作者

    王峰何凤有谭国俊

  • Author

    WANG Feng HE Feng-you TAN Guo-jun

  • 单位

    徐州工程学院信电工程学院中国矿业大学信息与电气工程学院

  • Organization
    Department of Information and Electrical, Xuzhou Institute of Technology School of Information and Electrical
    Engineering, China University of Mining and Technology
  • 摘要
    基于自适应神经模糊推理系统(ANFIS),以从提升机系统采集的电流信号、液压站压力信号、提升载荷、提升速度、加速度信号为输入变量,构造了矿井提升机自适应神经模糊故障诊断模型,该诊断模型以减法聚类算法为基础,通过将提升系统中机械、电气、液压等参数经过预处理后作为输入特征向量引入该诊断模型。采用从某矿主井提升机系统中采集的提升机运行数据对ANFIS进行训练,训练成功后,利用该模型成功地实现了对该提升机系统过载、重物下放以及液压站欠压等情况的故障诊断,验证了该诊断策略的有效性。
  • Abstract
    Based on adaptive neuro- fuzzy inference system, the adaptive neuro- fuzzy fault diagnosis model of mine hoist was constructed, taking current signal, p ressure signal from hydraulic station, hoist load, hoist speed and accelerated velocity signal collected from hoist system as input variable. This adaptive neuro- fuzzy fa ult diagnosis was based on subtraction clustering algorithm and parameters of machine, electric and hydraulic pressure in hoist system were inducted into adaptive neu ro- fuzzy fault diagnosis system after properly processed, as the input vectors of adaptive neuro- fuzzy fault diagnosis model. Via hoist operating data collected from ma in shaft hoist system, adaptive neuro- fuzzy fault diagnosis model was trained. After the successful training, this prototype system was adopted successfully to diagnose the situation of overloading, transferring heavy objects to a lower level and hydraulic station under pressure in hoist system, verifying the effectiveness of this diagnosis strategy.
  • 关键词

    减法聚类提升机故障诊断自适应神经模糊推理系统煤矿安全

  • KeyWords

    subtraction clustering; hoist; fault diagnosis; adaptive neuro-fuzzy inference system; coal mine safety;

  • 相关文章
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map