• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

“煤系战略性金属矿产成矿理论与分布规律”专题

来源:煤炭学报

《煤炭学报》编辑部特邀中国矿业大学(北京)代世峰教授担任客座主编,中国矿业大学王文峰教授、中国矿业大学(北京)赵蕾教授担任客座编辑,在2022第5期组织出版“煤系战略性金属矿产成矿理论与分布规律”专题,专题以煤系中锂、镓、锗、铝、钪、稀土、铌、锆、铀等战略性金属矿产为研究对象,选择优秀论文,介绍其分布规律与成矿理论。

“煤系战略性金属矿产资源”学术研讨会视频回放地址:https://mp.weixin.qq.com/s/yN9B3XXuNvDBJByVaJVTtg

行业视野

地质

类别

37个

关键词

83位

专家

17篇

论文

9034IP

点击量

11892次

下载量
  • 作者(Author): 许娜, 黄斌, 李强, 朱伟, 王志玮, 汪茹

    摘要:研究煤中元素赋存状态的方法包括各种显微探针方法(电子、离子和 X 射线探针)、谱学方法(如 X 射线吸收精细结构谱方法)、数理统计方法、浮沉试验方法和化学方法(如逐级化学提取试验)。 传统常用的数理统计方法有相关分析、聚类分析、因子分析和多元判别分析等,其中相关分析是基于灰分、硫质量分数、常量元素质量分数与微量元素质量分数的相关性来判断元素的赋存状态,如计算煤灰分与煤中元素质量分数之间的相关系数。 但是,数理统计方法在判别煤中元素赋存状态和来源时有诸多问题,例如不同基准下(全煤基和灰基)煤中元素相关性不一致问题。 不同的层次聚类算法在判别煤中元素的赋存状态时也会有诸多问题,例如不同的层次聚类算法会导致煤中元素赋存状态的推测结果不同。 机器学习的发展为上述问题的解决提供了解决方法。 例如非对称对数比转换方法,有效解决了煤和煤炭不同基准下元素之间、元素和灰分之间相关性不一致的问题。在单链接、全链接、平均链接和质心链接等 4 种常见的分层聚类算法中,平均链接算法的效果相对要好,在基于原始数据和转换后数据的聚类分析中,基于皮尔逊相关系数的距离度量都要比欧几里德距离好,基于枢轴坐标进行转换后的数据优于原始数据,而加权对称的枢轴坐标又优于枢轴坐标。 另外,还论述了机器学习在煤中关键金属和有害元素的地球化学研究优势,在以机器学习算法预测钡对关键金属元素铕干扰的临界值和基于 CART 算法确定我国煤中铀的辐射危害阈值 2 个实例中,机器学习算法得出的结果相比传统方法更加精准。
    免费下载
    煤炭学报
    2022年第05期
    480
    972

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map