• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

基于深度学习特征提取和粒子群支持向量机状态识别的齿轮智能故障诊断

2021-04-18 免费下载

作者:时培明,梁 凯,赵  娜,安淑君

作者单位:燕山大学电气工程学院

来源:中国机械工程

针对齿轮故障诊断问题,利用数理统计特征提取方法、深度学习神经网络、粒子群算法和支持向量机等技术,提出了一种基于深度学习特征提取和粒子群支持向量机状态识别相结合的智能诊断模型。


该模型利用深度学习自适应提取的频谱特征与数理统计方法提取的时域特征相结合组成联合特征向量,然后利用粒子群支持向量机对联合特征向量进行故障诊断。该模型在对多级齿轮传动系统试验台的故障诊断中实现了中速轴大齿轮不同故障类型的可靠识别,获得了满意的诊断结果。应用结果也验证了基于深度学习自适应提取频谱特征的有效性。



  责任编辑:张丹丹
今日专家
亮点论文

活动构造研究的关键环节与发展趋势袁道阳1, 王有林2, 李树武2, 王万合3, 李林元3, 邹小波4, 文亚猛1 作者单位(1. 兰州大学 地质科学与矿产资源学院,甘肃 兰州 730000;2. ...

今日企业

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
Baidu
map